
M a t t O p e n

 1

MattOpen 2.16

Developer’s Guide

2005

M a t t O p e n

 2

Copy Restrictions
A This software and the accompanying written materials are copyrighted and
are proprietary products of Skybeam. Copying of the software and of the
written materials is prohibited. Subject to these restrictions, you may make
one copy of the software for backup or archival purposes. That
backup/archival copy must have a label placed on the magnetic media,
showing the program name, and the copyright and trademark designation in
the same form as the original software.

B You may not decompile, disassemble, reverse engineer, copy, transfer, or
otherwise use the software except as expressly stated in this Agreement.

Disclaimer of Warranty
The software and accompanying written materials (including instructions for
use) are provided "As Is" without warranty of any kind. Skybeam makes no
warranties, express or implied, including but not limited to the implied war-
ranties of merchantability and fitness for a particular purpose. No oral or
written information or advice given by Skybeam, its dealers, distributors,
agents or employees shall create a warranty, and you may not rely on any
such information or advice.

Limitation of Remedies
In no event shall Skybeam be liable to you for any damages, including any
loss of profits, or other identical or consequential damages, arising out of your
use of or inability to use the software or the written materials, even if
Skybeam has been advised of the possibility of such damages.

Copyright
© 2004 Skybeam Management Ltd.
823 Salisbury House

NonStop™ Himalaya™ is a registered trademark of Compaq Computer
CorporationWindows, Windows NT, Microsoft Word, Microsoft Excel,
Microsoft Visual Basic, and Microsoft Visual C++ are registered trademarks of
Microsoft Corporation. Borland C++ and Borland Delphi are registered
trademarks of Borland International.

Hotline

29 Finsbury Circus
London EC2M 5QQ
UK

M a t t O p e n

 3

Skybeam Management Ltd.

Tel: +1 877 731 0114

Fax:+44 808 208 3500

Distribution
Skybeam Management Ltd.

Tel: +1 877 731 0114
Fax: +44 808 208 3500

www.skybeam.biz

M a t t O p e n

 4

Table of Contents

TABLE OF CONTENTS 4

PREFACE 11

About This Manual 12
How This Book Is Organized 13

Introduction 14
Part 1: MattOpen Dynamic Interface 14
Part 2: The Requester Replacer 15
Part 3: Matterhorn Macro Language 15

INTRODUCTION TO MATTOPEN 2.0 17

Introducing MattOpen 2.0 18
Openness Means Flexibility 19
An Example 20
16- and 32-bit MattOpen 21

The Matterhorn Suite 21
Matterhorn for Windows 21
MattWeb 22
Screen Designer 23

The Components of MattOpen 2.0 25
MattOpen Dynamic Interface 26

M a t t O p e n

 5

MattOpen Requester Replacer 26
Matterhorn Macro Language 26

Combining the Components of MattOpen 27
Requirements for MattOpen 27
Installing MattOpen 2.0 27

Enabling Requester Replacer 28
Enabling the Matterhorn Macro Language 29

CHAPTER 1: MATTOPEN DYNAMIC INTERFACE 31

MattOpen Dynamic Interface 32
Securing Past and Future Software Investments 33
Mattop16.dll & Mattop32.dll - Dynamic Link Libraries 33

Files of the Dynamic Interface 34
The Matt16 Folder 34
The Matt32 Folder 34
The Include Folder 36
The Demos/Dynintf Subfolder 37

How Does Dynamic Interface Work 39
Functions of the DLL 39
Integrating Dynamic Interface 41
Combining Dynamic Interface with Requester Replacer 44
Combining Dynamic Interface with Macros 44

CHAPTER 2: PROGRAMMING ENVIRONMENT 45

Programming Languages 46
Function Call Format 46
Hungarian Notation 48
Constant Names 50

M a t t O p e n

 6

CHAPTER 3: FUNCTIONS AND OPTIONS 51

Functions of the Dynamic Interface 52
MattConnect 53
MattErrorText 54
MattCall_0 56
MattCall_1 57
MattCall_2 58
MattCall_3 60
MattCall_4 62
MattCall 64
MattDisconnect 65

Dynamic Interface Error Codes 66

CHAPTER 4: USING DYNAMIC INTERFACE 69

Using Dynamic Interface 70
Conforming the Header File 70
Preparing the MattOpen Profile 71
Placing Function Calls 71
MattConnect - Establishing the Connection 72
MattCall - Making Calls 72
MattDisconnect - Closing the Connection 74
MattErrorText - Debugging 74

Development Considerations 75
The Location of Mattop16.dll & Mattop32.dll 77
Formatting and Converting Data 77
Compiling an Application 78
Linking the MattOpen Libraries 78

M a t t O p e n

 7

CHAPTER 5: DYNAMIC INTERFACE EXAMPLES 80

Borland C++ Demo 81
Troubleshooting the Demo 81
Explaining the Demo 82

32-bit Visual Basic Demo 84
Explaining the Demo 84

Two Samples 87
Update Priority 87
Get Key Figures 88

CHAPTER 6: THE REQUESTER REPLACER 92

Introducing Requester Replacer 93
Screen Designer and Requester Replacer 94
Enabling Requester Replacer 94
How Does Requester Replacer Work 94

Combining Requester Replacer with Dynamic Interface 95
Files of Requester Replacer 95

The Include\Delphi Subfolder 95
The Include\Msvc Subfolder 96
The Demos\Reqrepl 96
The Reqrepl\Msvc Subfolder 97

CHAPTER 7: USING REQUESTER REPLACER 98

Using Requester Replacer 99
Programming the DLL 99

CallBack Functionality of Requester Replacer 101
Defining a Requester Replace 102

Editing a Requester Replace 103

M a t t O p e n

 8

Debugging the Requester Replace 104

CHAPTER 8: REQUESTER REPLACER EXAMPLES 105

Requester Replacer Demo 106
Creating the Requester Replace Definition 106
Running the Requester 106

Hotels 107
Creating the Requester Replace Definition 107

CHAPTER 9: THE MATTERHORN MACRO LANGUAGE 110

The Matterhorn Macro Language 111
Types of Macros 112

Enabling the Matterhorn Macro Language 115
The DDE Statements 115
The CallDLL Statement 116

Combining Macros with Dynamic Interface 116

CHAPTER 10: DDE STATEMENTS 117

The DDE Statements 118
Parameter Types in DDE Statements 118

The String Identifier 119
The User Variable Identifier 119
The DSC Variable Identifier 119
The Edit Field Identifier 119

DDEInitiate 120
DDEInitiate Exemplified 121

DDEExecute 122

M a t t O p e n

 9

DDEExecute Exemplified 122
DDEPoke 124

DDEPoke Exemplified 125
DDERequest 125

DDERequest Exemplified 126
DDETerminate 127

DDETerminate Exemplified 127
DDETerminateAll() 128
DDE Support Files 128

The Demos\Dde Subfolder 128

CHAPTER 11: THE CALLDLL STATEMENT 129

The CallDLL Statement 130
Syntax of the CallDLL Statement 130
Using the CallDLL Statement 131
Programming the DLL 132
Files of CallDLL 133

The Include\Delphi Subfolder 133
The Include\Msvc Subfolder 133
The Demos\Calldll Subfolder 134

CHAPTER 12: USING MATTERHORN MACRO LANGUAGE 136

Creating Macros in Screen Designer 137
Creating a Macro 137
Associating the Macro with an Object 138
Debugging the Macro 140
DDE to Matterhorn 140

M a t t O p e n

 10

CHAPTER 13: MACRO EXAMPLES 141

Validating Country Codes 143
Merging Letters in Word 144
Launching a Macro from Word 145

INDEX 148

M a t t O p e n

 11

Preface
hese years, many Tandem customers face a number of
critical and decisive choices related to IT. Should one

maintain, develop, or further develop their system? Should
one opt for safe and well-known technology or migrate, or
should one combine and optimize the existing technology with
the latest? MattOpen 2.0 is a series of development tools that
may assist you in reaching the right conclusions when
addressing these choices.

MattOpen 2.0 is one of the components of the Matterhorn
Suite. Together, these components provide Tandem customers
with Pathway applications with easy and effortless access to
the client/server and Internet/intranet technologies – and,
what is more, without the customer having to rewrite a single
line of code in their existing Pathway applications.

MattOpen 2.0 is composed of three independent development
tools; MattOpen Dynamic Interface, Requester Replacer, and the
DDE- and DLL statements of the Matterhorn Macro Language.
When used optimally, these tools, together with the rest of the
Matterhorn Suite - will make your Tandem system as open to
new technologies as it will ever get. Using the tools of
MattOpen 2.0 you may:

T

M a t t O p e n

 12

! Access and control legacy Pathway applications on the
Tandem from newer client applications on the PC.

! Redirect requester calls from legacy Pathway
applications to procedures in a Windows DLL. In
effect, you replace the entire requester with a DLL. The
feature enables you to create and tailor new powerful
applications without risking past investments.

! Place calls in legacy Pathway applications to
procedures in a Windows DLL. The DLL is called
during the execution of a macro and the feature
extends the functionality of the current requester,
enabling you for instance to retrieve values from a
remote database or validate contents of fields.

! Create and run macros in order to set up DDE
conversations between your legacy Pathway
applications and any DDE-compatible application.

In short, the tools of MattOpen 2.0 provide gateways to and
from legacy Pathway applications. Using MattOpen, Tandem
customers may continue to create and add faster and more
powerful client applications in programming languages like
Borland Delphi, Microsoft Visual C++, Microsoft Visual Basic,
Borland C++, or Borland Pascal and integrate them with their
existing Pathway applications. Your legacy Pathway system
may be integrated with new PC-based applications with a
minimum of investment and risk.

About This Manual
Before you start using the MattOpen development tools,
please take your time to study this manual. The manual
provides an overview of MattOpen features and operation and

M a t t O p e n

 13

introduces you to the programming environments of the three
MattOpen tools, Dynamic Interface, Requester Replacer and
Matterhorn Macro Language.

NOTE Some of the statements of the Matterhorn Macro
Language are part of Screen Designer and require no license
for MattOpen. These statements are described in Chapter 7,
The Matterhorn Macro Language in the Screen Designer Setup
and Reference Guide.

MattOpen 2.0 is part of the Matterhorn Suite, and each
MattOpen component has its separate place in the Matterhorn
environment. Thus, the MattOpen tools are not standalone
programs, but must be used together with the Matterhorn
Suite.

The manual does not describe more general issues related to
the configuration and use of the other Matterhorn Suite
components, since they have been described in other user
guides. For a full discussion of the installation, configuration,
and application of Matterhorn for Windows, turn to your
Matterhorn Setup and Reference Guide. For information on
installing and using Screen Designer, turn to your Screen
Designer Setup and Reference Guide. For more information on
MattWeb, turn to the MattWeb Setup and Reference Guide.

How This Book Is Organized
As mentioned, MattOpen is composed of three more or less
independent components. This is reflected in the structure of
this book, in which the separate parts discuss each individual
component. Part 1 discusses the MattOpen Dynamic Interface,
Part 2 discusses Requester Replacer, and Part 3 describes the
Matterhorn macro language. The MattOpen Developer’s Guide is
organized as follows:

M a t t O p e n

 14

Introduction
Introduction to MattOpen 2.0 presents the three
development tools of MattOpen; the MattOpen Dynamic
Interface, the MattOpen Requester Replacer, and the
Matterhorn Macro Language. You will learn to install and
enable the tools of MattOpen.

Part 1: MattOpen Dynamic Interface
Part 1 discusses the application and operation of the MattOpen
Dynamic Interface and introduces you to the programming
environment of the Dynamic Interface. It presents the
functions that form the interface and describes how to use
them in your application development. Also, the manual
discusses some of the considerations which have to be
observed when using and developing applications for
MattOpen Dynamic Interface. Finally, a series of examples
may serve as inspiration when using MattOpen Dynamic
Interface.

Chapter 1, MattOpen Dynamic Interface introduces the
MattOpen Dynamic Interface and explains its overall
purpose and application.

Chapter 2, Programming Environment presents the
programming environment of the MattOpen Dynamic
Interface.

Chapter 3, Functions and Options lists and describes all
functions that make up the MattOpen dynamic link
library, MattOpen DLL.

Chapter 4, Using Dynamic Interface discusses some of the
considerations which should be observed when
developing client applications for MattOpen Dynamic

M a t t O p e n

 15

Interface and when setting up the interface on your
system. The chapter also presents the MattOpen profile.

Chapter 5, Dynamic Interface Examples is a series of
relevant examples which may serve as a starting point and
inspiration to your work with Dynamic Interface. Sample
source code is presented and commented.

Part 2: The Requester Replacer
Part 2 discusses the MattOpen Requester Replacer which
allows you to redirect entire requester calls from a legacy
requester to procedures in a Windows DLL. The feature must
be activated from Screen Designer. You will learn to enable
and use the Requester Replacer and a series of examples may
serve as inspiration when using the Requester Replacer.

Chapter 6, The Requester Replacer introduces the
Requester Replacer feature and explains its overall
purpose and application.

Chapter 7, Using Requester Replacer explains how to
enable, use and implement Requester Replacer. The
feature is activated from Screen Designer.

Chapter 8, Requester Replacer Examples is a couple of
relevant examples and exercises which may serve as a
starting point and inspiration to your work with the
Requester Replacer. Sample source code is presented and
commented.

Part 3: Matterhorn Macro Language
Part 3 discusses the Matterhorn macro language which you
may use to create and run macros from your legacy

M a t t O p e n

 16

applications and/or client applications. These macros may be
used to set up DDE-conversations between your legacy
requesters and any DDE-compatible application, call
procedures in a Windows DLL, or a combination of the two.
Note that we will only present those statements of the macro
language that require a MattOpen license.

Chapter 9, Matterhorn Macro Language introduces the
Matterhorn macro language which enables you to create
and insert macros in your legacy applications.

Chapter 10, DDE Statements presents the syntax and
application of the DDE statements in the Matterhorn
macro language.

Chapter 11, The CallDLL Statement presents the syntax
and application of the CallDLL statement of the
Matterhorn macro language.

Chapter 12, Using the Matterhorn Macro Language
describes the process of creating and associating macros in
Screen Designer.

Chapter 13, Macro Examples is a series of relevant
examples which may serve as a starting point and
inspiration when creating macros with the Matterhorn
macro language.

M a t t O p e n

 17

Introduction to MattOpen 2.0
MattOpen is a group of powerful application development
tools that is designed to complement Matterhorn for Windows,
Screen Designer and MattWeb. The tools, MattOpen Dynamic
Interface, Requester Replacer and Matterhorn Macro Language will
make your Tandem system as open as it will ever get.

The introduction is organized as follows:

! Introducing MattOpen 2.0

! The Components of MattOpen 2.0

! Requirements for MattOpen 2.0

! Installing MattOpen 2.0

M a t t O p e n

 18

Introducing MattOpen 2.0
MattOpen 2.0 is composed of three independent development
tools; MattOpen Dynamic Interface, Requester Replacer and
Matterhorn Macro Language. Using the tools of MattOpen 2.0
you may:

! Access and control legacy Pathway applications on the
Tandem from newer client applications on the PC.

! Redirect requester calls from legacy Pathway
applications to procedures in a Windows DLL. In
effect, you replace an entire requester with a DLL. The
feature enables you to create and tailor new powerful
applications without risking past investments.

! Create macros in order to call procedures in a
Windows DLL from legacy Pathway applications. The
DLL is called during the execution of a macro and the
feature extends the functionality of the current
requester, enabling you for instance to retrieve values
from a remote database or validate contents of fields.

! Create and run macros in order to set up DDE
conversations between your legacy Pathway
applications and any DDE-compatible application.

In short, the tools of MattOpen 2.0 provide gateways to and
from legacy Pathway applications. Using MattOpen, Tandem
customers may continue to create and add faster and more
powerful client applications in programming languages like
Borland Delphi, Microsoft Visual C++, Microsoft Visual Basic,
Borland C++, or Borland Pascal and integrate them with their
existing Pathway applications. Your legacy Pathway system

M a t t O p e n

 19

may be integrated with new PC-based applications with a
minimum of investment and risk.

Note that MattOpen 2.0 has been developed for Matterhorn
4.0.

Tandem

Flexibility
Openness

MattOpen

Integrity

Openness Means Flexibility
MattOpen means openness, and openness provides flexibility.
Using the tools of MattOpen you may combine your legacy
Pathway applications with new PC-based applications to form
new and powerful systems with a minimum of investments
and absolutely no conversion on the Tandem side. Your
current software investments are fully protected. Who wants
to throw 50 man years down the drain?

MattOpen is particularly desirable if your company develops
its subsystems on an ongoing basis. With MattOpen, the
consistency and performance level of the entire system is
secured. Your Tandem developers do not have to rewrite or

M a t t O p e n

 20

rethink entire Pathway application systems in new
programming languages to secure optimum performance or
access to the most recent technologies in the client/server area.
Using MattOpen and the Matterhorn Suite they can use the
best from either side and combine it into new powerful
solutions.

An Example
Take the following example: A company’s entire database
system was originally written as a series of subsystems in
Screen Cobol. In order to run their existing Pathway
applications in a client/server environment the company has
purchased Matterhorn for Windows. In addition, the
applications has been enhanced with a new updated GUI as
well as other advanced desktop features by means of Screen
Designer.

But the company wanted more. The system architects decided
to add new subsystems in order to extend the company
database, only these would be written in a faster and more
powerful Windows programming environment. At this point,
the company was left with two options; either the
programmers of the company had to rewrite the entire legacy
system in the new language - (a tiresome job) - or the company
would consider MattOpen, which would secure the
integration of the new system with the old.

The company chose the latter option and thus gained the
possibility of developing new powerful PC-based applications
and at the same time fully utilize the current Pathway
applications. In this book we will provide many more
examples like this one to show you the prospects of MattOpen.

Note that the chapters 5, 8, and 13 provide more MattOpen
examples.

M a t t O p e n

 21

16- and 32-bit MattOpen
The components of MattOpen support both 16- and 32-bit
operating systems. Consequently, MattOpen supports both the
16- and 32-bit versions of Matterhorn.

Note that MattOpen 2.0 has been developed for Matterhorn
4.0.

The Matterhorn Suite
Before we go on to explore MattOpen in detail, here is a brief
introduction to the rest of the Matterhorn Suite. The suite is
comprised of the following four software products: Matterhorn
for Windows, Screen Designer, MattWeb, and MattOpen.

Matterhorn for Windows
Matterhorn for Windows forms the core of the Matterhorn
Suite. Matterhorn enables you to access your legacy Pathway
applications from the PC and run them as client/server-based
applications.

Matterhorn is easy to install and configure; both on Tandem
and on PC and it operates equally well on both Windows 3.xx,
Windows 95, and Windows NT platforms. Your Pathway
applications will be running graphic interfaces in no time.

With Matterhorn for Windows, the maintainability of your
current Tandem system is intact. No cost and time-consuming
application conversions are required. Programmers do not
have to rewrite one single line of code when deploying
Matterhorn for Windows.

M a t t O p e n

 22

MattWeb
These days many Tandem customers are considering going on
the Internet. The Internet is hot. And intranets is looking to
become even hotter. At Skybeam we have committed ourselves to
provide the Tandem world with the best Internet/intranet
solution.

MattWeb is the only solution that is designed to present
Pathway applications graphically on the World Wide Web. At
the same time you may use MattWeb to establish your own
intranet.

MattWeb fully supports requesters which has been designed
with Screen Designer. At runtime, each screen element will be
presented on the remote user’s monitor by Java applets.

With MattWeb and Screen Designer in unison you may create
multiple mode applications. Different versions of the same
application can be run simultaneously on the Internet and
your own network.

Screen Designer and MattWeb offer the same kind of
flexibility to your company internally. You are not restricted to
settle for a permanent client interface. For instance, one third
of the users in your company may run requesters as
Matterhorn sessions; another third may run the same
requesters on the intranet via MattWeb and a browser; and the
last third may run the original 6530/3270-sessions. With
Screen Designer and MattWeb you may easily switch from one
client interface to another.

For further information on MattWeb, turn to the MattWeb
Setup and Reference Guide.

Figure 1.2: A Tandem application running on the Word Wide Web.

M a t t O p e n

 23

The browser is Netscape Navigator.

Screen Designer
Using Screen Designer, you may customize requesters on
many levels. With Screen Designer you may make cosmetic
changes to the interface such as removing superfluous fields,
grouping selected fields, and adding new text to make the
screen more intuitive to the user. You may insert backgrounds
such as wallpapers and gradients and set up multimedia
objects to be played when the user runs the requesters. You
may create and associate hints with each object. A hint is a
guiding text that explains the purpose of that particular screen
object.

M a t t O p e n

 24

On a more functional level you may create and associate push
buttons with function keys, macros, pictures, or multimedia
clips. You may create macros and associate them with buttons,
edit fields, pictures, and multimedia. You may create and
associate selection lists and entry histories with edit fields. In
addition, you may map Tandem keys to PC keys.

A new powerful feature in Screen Designer 4.0 is the ability to
create tabbed notebooks. Tabbed notebooks enable you to
organize the objects of a requester on separate tabs, just like
most users know them from their Windows applications.

Screen Designer allows you to customize legacy application
screens for different groups of users or individual users. Using
the same screen as a basis, you may create one screen for your

Figure I.1: Matterhorn Screen Designer allows you to customize and
optimize your current Tandem system.

M a t t O p e n

 25

bookkeeping department, another screen for the finance
department and so on. Each requester screen will reflect how
the current department operates.

Using Screen Designer, all the changes you may make to your
legacy Pathway applications will make functionality more
discoverable and common tasks simpler and more efficient.
Thus, Screen Designer increases end-user productivity. Screen
Designer is detailed in Screen Designer Setup and Reference
Guide.

Part of Screen Designer is the Data Explorer productivity tool
which provides a fast and easy way of monitoring and
maintaining your Screen Designer databases on a large scale.
Using Data Explorer you may create multiple requester
layouts on the fly, preview your screens, and drag and drop
selected objects from one requester to another and from one
database to another. In addition you may drag and drop entire
requesters from one database to another.

The Components of MattOpen 2.0
MattOpen consists of the following three components:

! MattOpen Dynamic Interface

! MattOpen Requester Replacer

! Matterhorn Macro Language

Each of these components are presented below and thoroughly
described in Part 1, 2 and 3, respectively.

M a t t O p e n

 26

MattOpen Dynamic Interface
Use the MattOpen Dynamic Interface to access and control
legacy Pathway applications from newer client applications on
the PC. Note that the Dynamic Interface has been developed
for Matterhorn 4.0. At the core of the MattOpen Dynamic
Interface you find the MattOpen DLL, a dynamic link library
which establishes and maintains the connection between the
PC-based applications and your legacy Pathway applications.

MattOpen Dynamic Interface is detailed in Part 1 of this book.

MattOpen Requester Replacer
Using the MattOpen Requester Replacer, you may redirect
entire requester calls from the current Pathway requester to
procedures in a Windows DLL. In effect, the DLL replaces the
requester, hence the name. The feature opens up the Tandem
system to the powerful and flexible DLL-technology.
Requester Replacer is a MattOpen feature, but you use Screen
Designer to define your Requester Replaces.

MattOpen Requester Replacer is detailed in Part 2 of this book.

Matterhorn Macro Language
Use the Matterhorn macro language to create macros and
integrate them with your Matterhorn sessions. You may use
macros for instance to speed up and simplify administrative
tasks or exchange data with other applications that support
DDE or DLL. The Matterhorn macro language provides you
with several related features. You may:

! create macros and run them from your legacy
Pathway applications in order to set up dynamic-data

M a t t O p e n

 27

exchange (DDE) conversations with other applications
that support DDE.

! create macros in the macro language of the client
application to call your legacy Pathway applications.

! create and run macros that calls a Windows DLL.

! create macros that combine DLL and DDE technology.

Matterhorn may operate both as DDE-client and DDE-server.
The Matterhorn macro language is detailed in Part 3 of this
book.

Combining the Components of
MattOpen

Each component of MattOpen can be used alone for its specific
purpose or combined with the other tools as you see fit.
Chapters 1, 6, and 9 provide examples to illustrate how the
tools may be combined.

Requirements for MattOpen
The tools of MattOpen 2.0 require that you deploy Matterhorn
4.0 for Windows and Screen Designer. In addition you must
use development environments that support DLL.

Installing MattOpen 2.0
To Install MattOpen:

M a t t O p e n

 28

1. Insert the Matterhorn Suite CD-ROM in the CD-ROM
drive. Select Run from the Start menu, locate the CD-
ROM and launch the Setup.exe file.

2. In the opening screen, select MattOpen. MattOpen
Installation will prepare the InstallShield Wizard,
which will guide you through the process.

3. Make sure to install MattOpen in your current
Matterhorn folder (Matthorn). The wizard installs the
16- and 32-bit versions of the Dynamic Interface
(Mattop16.dll and Mattop32.dll) sample include and
header files, and various demos that illustrate the
functionality of each component of MattOpen 2.0. The
demos are described in detail in Chapters 5, 8 and 12.

In your Matterhorn group folder, the dynamic link
libraries are installed in the Matt16 and Matt32
subfolders. Header and include files are installed in the
Include subfolder, and the demos are installed in the
Demos subfolder. The demos require that you do not
change the default names of the folders in the folder
structure.

All the files of MattOpen 2.0 are detailed in Chapter 1
MattOpen Dynamic Interface, Chapter 6, The Requester Replacer,
Chapter 10, DDE Statements, and Chapter 11, The CallDLL
Statement.

Enabling Requester Replacer
The Requester Replacer option is an integral part of Screen
Designer. If you have already installed Screen Designer you
merely have to transfer the new license file, LICENSE, from
your MattOpen diskette to your Tandem.

M a t t O p e n

 29

The next time you launch Screen Designer, the Requester
Replacer option will be available from the Define menu.

Enabling the Matterhorn Macro Language
The Matterhorn macro language is an integral part of Screen
Designer, but you cannot use the statements which are used
DDE and DLL without a valid MattOpen license. The
remaining statements are described in Chapter 7 of the Screen
Designer Setup and Reference Guide.

If you have already installed Screen Designer you merely have
to transfer the new license file, LICENSE, from your MattOpen
diskette to your Tandem. The next time you launch Screen
Designer, you will be able to create macros containing the
various DDE- and DLL statements.

M a t t O p e n

 30

Part 1

he MattOpen
Dynamic Interface

Part 1 introduces you to the MattOpen Dynamic Interface. The
manual provides an overview of Dynamic Interface features
and operation, and introduces you to its programming
environment. It also presents the functions that form the
interface and describes how to use them in your application
development. We also discuss some of the considerations
which have to be observed when using and developing
applications for MattOpen Dynamic Interface. Finally, we
present a series of demos and examples to show you how the
Dynamic Interface may be used for specific purposes.

T

M a t t O p e n

 31

Chapter 1:
MattOpen Dynamic Interface

hapter 1 introduces the MattOpen Dynamic Interface
which allows you to access and control legacy Pathway

applications from newer client applications on the PC.

The chapter is organized as follows:

! MattOpen Dynamic Interface

! Files of the MattOpen Dynamic Interface

! How Does MattOpen Dynamic Interface Work

C

M a t t O p e n

 32

MattOpen Dynamic Interface
The MattOpen Dynamic Interface allows PC-based client
applications to access Pathway requesters on the Tandem. The
Dynamic Interface is the mediator, which enables the client
application to control a legacy Pathway application running
under Matterhorn. In this way, requesters that have been
configured to be executed by Matterhorn (so-called
Matterhorn sessions) may be called from the client.

At the core of the Dynamic Interface you find the MattOpen
DLL, a dynamic link library containing a series of functions
which establish and maintain the connection between the PC-
based client application and the requesters on the Tandem.

PCTandem

Legacy Pathway
application

Requester running as a
Matterhorn session

PC application
(Visual Basic, C,
C++, Delphi, etc.)

Database

Server A

Server B

Mattopen.dll

MattConnect
MattErrorText

MattCallxx
MattCall

MattDisconnect

Figure 1.1: The MattOpen Dynamic Interface establishes and maintains the
connection between a client application and a legacy Pathway application
running under Matterhorn.

More figuratively, the Dynamic Interface forms a gateway
through which you may establish and maintain a connection

M a t t O p e n

 33

between your new PC-based client applications and your
legacy Pathway applications on the Tandem.

Securing Past and Future Software Investments
With the MattOpen Dynamic Interface, Skybeam Management
Ltd. has responded to an increasing demand of its Matterhorn
customers - namely the wish to develop new PC-based
applications and at the same time be able to execute and
exchange data with their original Pathway applications.

With MattOpen Dynamic Interface you may continue to create
and add faster and more powerful client applications in
programming languages like Borland Delphi, Microsoft Visual
C++, Microsoft Visual Basic, Borland C++, or Borland Pascal.

MattOpen Dynamic Interface is particularly desirable if your
company develops its subsystems on an ongoing basis. With
MattOpen Dynamic Interface, the consistency and
performance level of your entire system is secured.

Mattop16.dll & Mattop32.dll - Dynamic Link
Libraries

As mentioned, the MattOpen DLL establishes and maintains
the connection between the PC-based client application and
the requesters on the Tandem.

The functions exist in versions for both 16- and 32-bit
Matterhorn, Mattop16.dll and Mattop32.dll, respectively. All
functions are thoroughly described in Chapter 3, Functions
and Options.

You may develop your applications in any programming
language that supports DLL, such as Microsoft Visual C++,
Microsoft Visual Basic, Borland C++ or Borland Pascal.
Remember to conform the header file to the chosen

M a t t O p e n

 34

programming language. Read more about using MattOpen
Dynamic Interface in Chapter 4, Using Dynamic Interface.

Files of the Dynamic Interface
The following sections present the files which are part of your
MattOpen Dynamic Interface package; the DLLs, the demos
and their associated support files. The files are presented
under headings which reflect the subfolder in which they are
stored.

The Matt16 Folder
The Matt16 folder is part of your current Matterhorn folder
structure. It contains all the files for the 16-bit version of the
Matterhorn Client. When you install MattOpen Dynamic
Interface, the following file is copied to the folder:

Mattop16.dll

contains all functions developed for
the 16-bit version of Dynamic
Interface.

There are no formal demands as to the location of the DLL, but
take note of the standard top-down search order when a DLL
is called (see Figure 1.2).

The Matt32 Folder
The Matt32 folder is part of your current Matterhorn folder
structure. It contains all the files for the 32-bit version of the
Matterhorn Client. When you install MattOpen Dynamic
Interface, the following file is copied to the folder:

M a t t O p e n

 35

Mattop32.dll

contains all functions developed for
the 32-bit version of the Dynamic
Interface (see Figure 1.2).

Folder with
exe-file

Current folder

Windows\
System folder

Windows
folder

PATH
statement

Figure 1.2: When installing the MattOpen DLL, take note of the dynamic
link library search order depicted above.

M a t t O p e n

 36

The Include Folder
The Include folder contains three subfolders: Delphi, Msvc
and Vb.

The Delphi Subfolder
This folder stores an include file for Borland Delphi.

Mattopen.pas Include file. The file lists all functions
developed for MattOpen Dynamic
Interface. Use this file when
developing new Borland Delphi
applications for the Dynamic Interface.

The Msvc Subfolder
This folder stores a header file for Microsoft Visual C++.

Mattopen.h Header file. The file lists all functions
developed for MattOpen Dynamic
Interface. Use this file when
developing new Microsoft Visual C++
applications for the Dynamic Interface.

The Vb Subfolder
This folder stores include files for 16 and 32-bit Visual Basic.

Mattop16.inc Lists all functions developed for
MattOpen Dynamic Interface. Use this
file when developing new 16-bit
Visual Basic applications for the
Dynamic Interface.

M a t t O p e n

 37

Mattop32.inc Lists all functions developed for
MattOpen Dynamic Interface. Use this
file when developing new 32-bit
Visual Basic applications for the
Dynamic Interface.

The Demos/Dynintf Subfolder
The Demos/Dynintf subfolder contains three subfolders: Bc16,
Vb16 and Vb32. These folders contain various MattOpen
demos and their support files.

The Bc16 Subfolder
The Bc16 subfolder stores a demo application written in 16-bit
Borland C++ 4.5. The folder contains all support files for the
demo and a Borland C++ header file:

Mattdemo.exe The executable file of the demo. The
program is thoroughly discussed in
Chapter 5, Dynamic Interface Examples.

Mattopen.h

is the Dynamic Interface header file. The
file lists all functions developed for
MattOpen Dynamic Interface. Use this
file when developing new Borland C++
applications for the Dynamic Interface.

Mattdemo.cpp The source code of the Borland C++
demo. The source code is commented in
Chapter 5, Dynamic Interface Examples.

Mattop16.ini The MattOpen profile used by the
program. The profile provides the client
application with information relevant to
the execution of the current Matterhorn
session.

M a t t O p e n

 38

Mattdemo.def Borland C++ support file.

Mattop16.lib The MattOpen C++ import library.

Mattdemo.res Borland C++ resource file.

The Vb16 Subfolder
The Vb16 subfolder stores a demo application written in 16-bit
Visual Basic. The folder contains all support files for the demo
and a 16-bit Visual Basic include file:

Mattvb16.exe The executable file of the demo. The
program is thoroughly discussed in
Chapter 5, Dynamic Interface Examples.

Mattop16.ini The MattOpen profile used by the
program.

Mattsdif.frm The Visual Basic source code file.

Mattvb16.vbp The Visual Basic project file.

Mattopen.frx Visual Basic support file.

The Vb32 Subfolder
The Vb32 subfolder stores a demo application written in 32-bit
Visual Basic. The folder contains the following files:

Mattvb32.exe The executable file of the demo. The
program is thoroughly discussed in
Chapter 5, Dynamic Interface Examples.

M a t t O p e n

 39

Mattop32.ini The MattOpen profile used by the
program.

Mattsdif.frm The Visual Basic source code file.

Mattvb32.vbp The Visual Basic project file.

Mattopen.frx Visual Basic support file.

How Does Dynamic Interface Work
As mentioned in the previous section, the link between the
client application and a Pathway requester executed by
Matterhorn is established and maintained by a series of
functions in the MattOpen DLL. These functions will establish
connections, call the requesters with optional linkage
parameters, exchange data, and display error messages
triggered by the requesters.

The operation flow is depicted in Figure 1.3 next page. As the
figure suggests, the MattOpen DLL is to be incorporated into
your PC-based client application by you placing calls to the
various functions in the application source code. In Chapter 4,
Using Dynamic Interface we line out a course of action which
you may follow when you develop applications for Dynamic
Interface and explains how to customize the connection
between a PC-based application and a Matterhorn session.

Functions of the DLL
The MattOpen DLL contains the following functions:

MattConnect is used to connect the client application and
Mattwin.exe (Matterhorn). When it is called, the function
will launch Matterhorn, which will then be prepared to

M a t t O p e n

 40

execute and control the requester with valid configuration
values.

Function 1

A PC application
(Visual Basic, C,
C++, Delphi, etc)

A legacy Pathway
application running
under Matterhorn

Mattop16.dll/
Mattop32.dll

Function 2

Optional linkage
parameters

Screen Cobol
Requester A

Screen Cobol
Requester B

Figure 1.3: Operation of the MattOpen Dynamic Interface.

MattErrorText obtains the descriptive text associated with
an error message returned from a requester executed by
Matterhorn.

MattCall_0 makes a call to the requester without any
linkage section parameters. Note that MattCall functions
are waited calls. The functions will return only when the
requester does an exit program, stops running, or
terminates due to run-time error.

MattCall_1 makes a call to the requester with one linkage
section parameter.

M a t t O p e n

 41

MattCall_2 makes a call to the requester with two linkage
section parameters.

MattCall_3 makes a call to the requester with three
linkage section parameters.

MattCall_4 makes a call to the requester with four linkage
section parameters.

MattCall is a dynamic version of the functions MattCall_0
through MattCall_4. With the function you may specify
the number of parameters at runtime. Use the function
when activating requesters with more than four linkage
section parameters.

MattDisconnect terminates the connection between the
client application and Matterhorn. To disconnect, exit your
requester as you would normally exit it.

Integrating Dynamic Interface
In this section we present and comment a series of illustrations
which are intended to explain how Matterhorn for Windows
and the Dynamic Interface are implemented so that a legacy
application - without any source conversion or prior
modification - and a new PC-based application may be
integrated.

t a major retailer it was decided to enhance the present
booking and order system with and advanced customer

and marketing module. The new module was developed in
Borland Delphi. At the moment, the backbone of the system
consisted of a customer file and an order file (see Figure 1.4).
Now the company wanted to optimize their marketing efforts
in terms of more efficient features for planning, control and
follow-up on customers and prospects. For this reason they

A

M a t t O p e n

 42

bought a separate module designed specifically for these
purposes.

The original order file were to remain a Scobol application. It
provided the required functionality and no one considered
altering it. Furthermore, the company still wanted to take
advantage of Tandems’ powerful server side.

Figure 1.4 below depicts the old system where both customers
and orders were being handled on the Tandem.

Database

Order File
Tandem requester

A Pathway sales system on Tandem

Server A

Customer File
Tandem requester

Server B

Figure 1.4: In the old system, both orders and customers were handled on
the Tandem.

In Figure 1.5 Matterhorn for Windows has been implemented:
The order file is now being handled by Matterhorn on the PC,
and the new customer and marketing module has been
installed, also on the PC. As seen, there is no way the customer
file has access to the order file and vice versa.

The next stage is depicted in Figure 1.6: The Dynamic Interface
has been introduced. Relevant calls have been placed to the

M a t t O p e n

 43

order file via the MattOpen DLL. A menu option, Order File
has been inserted: The user simply has to click this button in
order to get to the order file.

PCTandem

Order File

Requester running as a
Matterhorn session

Customer and
Marketing Module
Standalone client

application with new
features

Database

Server A

Server B

Figure 1..5: The order file is now being handled by Matterhorn on the PC
and a new customer and marketing module has been installed, also on the
PC. There is no link between the customer file and the order file.

PCTandem

Order File

Requester running as a
Matterhorn session

Customer and
Marketing Module
Standalone client

application with new
features

Database

Server A

Server B

Mattopen.dll

Figure 1.6: The Dynamic Interface allows the user to access and control the
order file from the customer and marketing module.

M a t t O p e n

 44

In addition, several statistical features on the PC use data from
the Tandem. These data are retrieved using MattOpen calls. In
Chapter 5, Dynamic Interface Examples we will take a closer
look at some of these features and describe how the MattOpen
calls are implemented.

Combining Dynamic Interface with Requester
Replacer

You may combine the MattOpen Dynamic Interface and the
Requester Replacer feature. Let’s imagine that your company
is currently using the Dynamic Interface for integrating new
PC-based applications with your legacy Pathway applications,
and you wish to replace a certain requester with a DLL for
providing better printing facilities. In this case you would
define a Requester Replace in Screen Designer, making any
call to this requester point to a DLL instead. At runtime, any
call for the requester in question will be redirected to the DLL.

Combining Dynamic Interface with Macros
You may combine the MattOpen Dynamic Interface with
macros. Imagine a situation where your system has already
been set up to use the Dynamic Interface. Old and new has
been successfully integrated. Now you wish to extend a legacy
requester in the system, for instance with features for
validating the contents of certain fields. In this case, you
would write a macro in Screen Designer which makes the call
to the DLL that validates the contents of the fields, and then
associate the macro with a button or another screen object. At
runtime you would make a call to the requester using the
Dynamic Interface, and then have the contents of specific edit
fields validated by activating the macro.

M a t t O p e n

 45

Chapter 2:
Programming Environment

hapter 2 describes the programming environment of the
MattOpen Dynamic Interface. The section outlines the

format, notation, and naming conventions used with the
Dynamic Interface’s function calls and constants.

The chapter is organized as follows:

! Programming Languages

! Function Call Format

! Notation Conventions

! Constant Names

C

M a t t O p e n

 46

Programming Languages
You may choose to develop your applications in any
programming language that supports DLL, for instance
Borland Delphi, Microsoft Visual C++, Microsoft Visual Basic,
Borland C++, or Borland Pascal.

Function Call Format
All functions are in the same format. This section uses the
function MattConnect as a basis, describing the format of all
functions:

Function Name
MattConnect

The function name used when calling the function
from the C language.

Name in DLL
MATTCONN

The function import name used when loading the
DLL.

Description
A description of the function.

MattConnect is used to establish a connection between
the client application and Mattwin.exe (Matterhorn).
When called, the function will launch Matterhorn,

M a t t O p e n

 47

which will then be prepared to execute and control the
requester in question. See Chapter 3, Functions and
Options for a description of all MattOpen functions.

Syntax
The function has the following syntax:

extern “C” pascal short int MattConnect
(short int *fpwMHnd, char *fpacSection,
char *fpacProfile);

The syntax describes the parameters (or fields) and
gives the appropriate type of each. The data type of the
return value is identified by the field to the left of the
function call. If a parameter is an input parameter, the
function call fills in the value upon successful
completion. If a parameter is an input and output
parameter, the application must supply the value, but
the function call updates it upon successful
completion.

Parameters
A full description of each parameter (or field). See the
section Notation Conventions for more information
about the notation of parameters.

MattConnect takes three parameters, an options
handle (for controlling the Matterhorn session), a
section name (for identifying the Matterhorn session),
and a filename (for identifying the MattOpen profile):

fpwMHnd
A handle used for the communication with
Mattwin.exe.

M a t t O p e n

 48

fpacSection
A section in the MattOpen profile pointing to the
Matterhorn session. Each section must contain
information about where to find the Matterhorn
executable file, Mattwin.exe, and the Matterhorn
profile. Each section name must be unique. Only one
section, i.e. service can be active at a time.

fpacProfile
The name of the MattOpen profile. This profile
contains the section(s) indicated by fpacSection.

Return Values
The return value is zero if MattConnect fails to
establish connection. If connection is successful then
the return value is non-zero. To retrieve the error code
associated with a failure, use the function
MattErrorText.

Hungarian Notation
Hungarian notations are rules that define how to create names
that indicate both the purpose and data type of an item. All
parameters and variables in this manual conform to the
notation convention shown in this section. These naming
conventions are used in this manual to help you identify the
purpose and type the function parameter and fields.

All parameter and field names consist of up to three elements;
a prefix, a base type and a qualifier. For example the parameter,
fpacProfile has the following elements:

! fp is the prefix

! c, character, is the base type

! Profile, is the qualifier

M a t t O p e n

 49

The prefix, written in lowercase letters, specifies additional
information about the item, for instance whether it is a pointer,
an array, or so on. The base type, also written in lowercase
letters, identifies the data type of the item. The qualifier, a
short word or phrase written with the first letter of each word
in upper-case letters, specifies the purpose of the item.
Standard prefixes are:

Prefix: Description:

p pointer

fp far pointer

a array

fpac far pointer array

 Standard base types are:

Base type: Type/Description:

c char

l long

n int

s structure

u unsigned

v void

M a t t O p e n

 50

Constant Names
A constant name is a descriptive name for a numeric value
used with the MattOpen Dynamic Interface functions. If you
use constant names in your code and the value of the constant
changes in the Dynamic Interface header file, you will not
need to make the change throughout the program.

All constant names are written in upper-case letters and are
prefixed with the string “MO_”. The rest of the constant name
identifies the meaning of the constant.

M a t t O p e n

 51

Chapter 3:
Functions and Options

his chapter lists and describes all functions that make up
the dynamic link libraries, Mattop16.dll and Mattop32.dll.

The DLLs are stored in the Matt16 and Matt32 subfolder.

The chapter is organized as follows:

! Functions of the Dynamic Interface

! MattOpen Error Codes

T

M a t t O p e n

 52

Functions of the Dynamic Interface
This section lists all the functions that make up the MattOpen
DLL, and gives a short description of each program. All
functions are included in both Mattop16.dll and Mattop32.dll.

You may develop your applications in any programming
language that supports DLL, like Borland Delphi, Microsoft
Visual C++, Microsoft Visual Basic, Borland C++, or Borland
Pascal. Remember to conform the Dynamic Interface header
file to the chosen programming language.

To sum up, the following functions reside in MattOpen DLL.

! MattConnect

! MattErrorText

! MattCall_0

! MattCall_1

! MattCall_2

! MattCall_3

! MattCall_4

! MattCall

! MattDisconnect

M a t t O p e n

 53

MattConnect

Function Name
MattConnect

Name in DLL
MATTCONN

Description
MattConnect is used to connect the client application
and Mattwin.exe (Matterhorn). When called, the
function will launch Matterhorn, which will then be
prepared to execute and control the requester with
valid configuration values.

Syntax
The function has the following syntax:

extern “C” pascal short int MattConnect
(short int *fpwMHnd, char *fpacSection,
char fpacProfile);

Parameters
fpwMHnd
A handle used for the communication with
Mattwin.exe.

fpacSection
A section in the MattOpen profile pointing to the
Matterhorn session. Each section must contain
information about where to find the Matterhorn

M a t t O p e n

 54

executable file, Mattwin.exe, and the Matterhorn
profile. Each section name must be unique.

fpacProfile
The name of the MattOpen profile. This profile
contains the section(s) indicated by fpacSection.

Return Value
The return value is zero if MattConnect fails to
establish connection. If connection is successful then
the return value is non-zero. To retrieve the error code
associated with a failure, use the function
MattErrorText.

MattErrorText

Function Name
MattErrorText

Name in DLL
MATTETXT

Description
This function obtains the descriptive text associated
with an error message returned from a requester
executed by Matterhorn.

M a t t O p e n

 55

Syntax
The function has the following syntax:

extern "C" pascal MattErrorText
(short int fpwMHnd, char *fpacMsg, short
int wLen);

Parameters
fpwMHnd
A handle used for the communication with
Mattwin.exe.

*fpacMsg
The pointer to the location to receive a textual
description of the error. This parameter should point
to a character buffer of the size stored in the integer
pointed to by wLen, which should be at least 32 bytes
long. The error text will be truncated if the buffer is too
short. The maximum length of any message will not be
longer than 256 bytes.

wLen
On input the pointer to the maximum number of
characters the function should copy to the location
specified by MattErrorText.

Return Value
The return value is zero if MattErrorText fails. If
connection is successful then the return value is non-
zero.

M a t t O p e n

 56

MattCall_0

Function Name
MattCall_0

Name in DLL
MATTCAL0

Description
This function will make a call to the requester without
any linkage section parameters. Note that MattCall
functions are waited calls. The functions will return
only when the requester does an exit program, stops
running, or terminates due to run-time error.

Syntax
The function has the following syntax:

extern "C" pascal short int MattCall_0
(short int fpwMHnd, char *fpacUnit);

Parameters
fpwMHnd
A handle used for the communication with
Mattwin.exe.

*fpacUnit
The requester to be activated.

M a t t O p e n

 57

Return Value
The return value is zero if MattCall_0 fails. If the call is
successful then the return value is non-zero. To
retrieve the error code associated with a failure, use
the function MattErrorText.

MattCall_1

Function Name
MattCall_1

Name in DLL
MATTCAL1

Description
This function will make a call to the requester with one
linkage section parameter. Note that MattCall
functions are waited calls. The functions will return
only when the requester does an exit program, stops
running, or terminates due to run-time error.

Syntax
The function has the following syntax:

extern "C" pascal short int MattCall_1
(short int fpwMHnd, char *fpacUnit, void
*fpacL1, short int wSize1);

M a t t O p e n

 58

Parameters
fpwMHnd
A handle used for the communication with
Mattwin.exe.

*fpacUnit
The requester to be activated.

*fpacL1
A pointer to the linkage section data. Remember to
conform data delivered through this pointer to the
format required by the requester. For instance, a
binary field must be swapped.

wSize1
The size of the linkage section data parameter in bytes.

Return Value
The return value is zero if MattCall_1 fails. If the call is
successful then the return value is non-zero. To
retrieve the error code associated with a failure, use
the function MattErrorText.

MattCall_2

Function Name
MattCall_2

Name in DLL
MATTCAL2

M a t t O p e n

 59

Description
This function will make a call to the requester with two
linkage section parameters. Note that MattCall
functions are waited calls. The functions will return
only when the requester does an exit program, stops
running, or terminates due to run-time error.

Syntax
The function has the following syntax:

extern "C" pascal short int MattCall_2
(short int fpwMHnd, char *fpacUnit, void
*fpacL1, short int wSize1, void *fpacL2,
short int wSize2);

Parameters
fpwMHnd
A handle used for the communication with
Mattwin.exe.

*fpacUnit
The requester to be activated.

*fpacL1
First pointer to the linkage section data. Remember to
conform data delivered through this pointer to the
format required by the requester. For instance, a
binary field must be swapped.

wSize1
The size of the first linkage section data parameter in
bytes.

*fpacL2
Second pointer to the linkage section data.

M a t t O p e n

 60

wSize2
The size of the second linkage section data parameter
in bytes.

Return Value
The return value is zero if MattCall_2 fails. If the call is
successful then the return value is non-zero. To
retrieve the error code associated with a failure, use
the function MattErrorText.

MattCall_3

Function Name
MattCall_3

Name in DLL
MATTCAL3

Description
This function will make a call to the requester with
three linkage section parameters. Note that MattCall
functions are waited calls. The functions will return
only when the requester does an exit program, stops
running, or terminates due to run-time error.

Syntax
The function has the following syntax:

M a t t O p e n

 61

extern "C" pascal short int MattCall_3
(short int fpwMHnd, char *fpacUnit, void
*fpacL1, short int wSize1, void *fpacL2,
short int wSize2, void *fpacL3, short int
wSize3);

Parameters
fpwMHnd
A handle used for the communication with
Mattwin.exe.

*fpacUnit
The requester to be activated.

*fpacL1
First pointer to the linkage section data. Remember to
conform data delivered through this pointer to the
format required by the requester. For instance, a
binary field must be swapped.

wSize1
The size of the first linkage section data parameter in
bytes.

*fpacL2
Second pointer to the linkage section data.

wSize2
The size of the second linkage section data parameter
in bytes.

*fpacL3
Third pointer to the linkage section data.

wSize3
The size of the third linkage section data parameter in
bytes.

M a t t O p e n

 62

Return Value
The return value is zero if MattCall_3 fails. If the call is
successful then the return value is non-zero. To
retrieve the error code associated with a failure, use
the function MattErrorText.

MattCall_4

Function Name
MattCall_4

Name in DLL
MATTCAL4

Description
This function will make a call to the requester with
four linkage section parameters.

Syntax
The function has the following syntax:

extern "C" pascal short int MattCall_4
(short int fpwMHnd, char *fpacUnit, void
*fpacL1, short int wSize1, void *fpacL2,
short int wSize2, void *fpacL3, short int
wSize3, void *fpacL4, short int wSize4);

M a t t O p e n

 63

Parameters
fpwMHnd
A handle used for the communication with
Mattwin.exe.

*fpacUnit
The requester to be activated.

*fpacL1
First pointer to the linkage section data. Remember to
conform data delivered through this pointer to the
format required by the requester. For instance, a
binary field must be swapped.

wSize1
The size of the first linkage section data parameter in
bytes.

*fpacL2
Second pointer to the linkage section data.

wSize2
The size of the second linkage section data parameter
in bytes.

*fpacL3
Third pointer to the linkage section data.

wSize3
The size of the third linkage section data parameter in
bytes.

*fpacL4
Fourth pointer to the linkage section data.

wSize4
The size of the fourth linkage section data parameter in
bytes.

M a t t O p e n

 64

Return Value
The return value is zero if MattCall_4 fails. If the call is
successful then the return value is non-zero. To
retrieve the error code associated with a failure, use
MattErrorText.

MattCall

Function Name
MattCall

Name in DLL
MATTCALL

Description
MattCall is a dynamic version of functions MattCall_0
through MattCall_4. With this function you may
specify the number of parameters at run-time. Use the
function when activating requesters with more than
four linkage section parameters.

Syntax
The function has the following syntax:

extern "C" pascal short int MattCall
(short int fpwMHnd, char *fpacUnit, short
int siPCnt, void* fpapLink[], short int
fpaiSize[]);

M a t t O p e n

 65

Parameters
fpwMHnd
A handle used for the communication with
Mattwin.exe.

*fpacUnit
The requester to be activated.

siPCnt
The number of linkage section parameters required by
the requester.

fpapLink[]
An array of pointers to the linkage section parameters.
The number of pointers must equal the number of
linkage section parameters specified for siPCnt.

fpaiSize[]
The size of each linkage section parameter. The
number of sizes must equal the number of linkage
section parameters specified for siPCnt.

Return Value
The return value is zero if MattCall fails. If connection
is successful then the return value is non-zero. To
retrieve the error code associated with a failure, use
the function MattErrorText.

MattDisconnect

Function Name
MattDisconnect

M a t t O p e n

 66

Name in DLL
MATTDISC

Description
This function terminates the connection between the
client application and Matterhorn. To disconnect, exit
the requester as you would normally.

Syntax
The function has the following syntax:

extern "C" pascal short int MattDisconnect (short
int *fpwMHnd);

Parameters
fpwMHnd
A handle used for the communication with
Mattwin.exe.

Return Value
The return value is zero if MattDisconnect fails. If
disconnection is successful then the return value is
non-zero. To retrieve the error code associated with a
failure, use the function MattErrorText.

Dynamic Interface Error Codes
This section lists the Dynamic Interface error codes and their
textual descriptions:

M a t t O p e n

 67

Const

#define MO_ERR_DDE 1

#define MO_ERR_APPL 2

#define MO_ERR_MATT 3

#define MO_ERR_SERV 4

#define MO_ERR_EXEC 5

#define MO_ERR_RUN 6

 #define MO_ERR_APPL_HND_INV 1

/*Handle out of bounds or free */

#define MO_ERR_APPL_ALL_USED 2

/* No more handles available */

#define MO_ERR_APPL_INTERNAL 3

/* Internal error in MattOpen*/

#define MO_ERR_APPL_SERV_USED 4

/* This server name is already used */

#define MO_ERR_APPL_SERV_BUSY 5

/* This server is already executing */

#define MO_MATT_ALLOC_WS_OVERFLOW 10

/*Trying to set too much data on call params */

#define MO_MATT_RUN_ERROR 11

/* MattWin detected a run time error */

#define MO_MATT_UNKNOWN_FUNCTION 12

/*Invalid function send to MATTWIN */

#define MO_MATT_INVALID_PARM 13 /* Invalid
parameter */

#define MO_MATT_STOPPED 14

/* MATTWIN stopped unexpected as a task */

#define MO_MATT_POSTAPP 15

M a t t O p e n

 68

/* PostQuitMessage to MATTWIN failed */

#define MO_ERR_SERV_VERSION 20

/* Server responded with invalid version*/

#define MO_ERR_SERV_ERROR 21

/*Server responded with an error code */

 #define MO_ERR_SERV_TRUNC_REPL 22

/* Reply was truncated */

M a t t O p e n

 69

Chapter 4:
Using Dynamic Interface

his chapter discusses how to use the Dynamic Interface
and describes some of the considerations which should be

observed when developing client applications for MattOpen
Dynamic Interface and when setting up the interface on your
system. The chapter also presents the MattOpen profile, which
must be prepared correctly when calling Matterhorn from a
client application.

The chapter is organized as follows:

! Using Dynamic Interface

! Development Considerations

T

M a t t O p e n

 70

Using Dynamic Interface
When setting up your system to use MattOpen Dynamic
Interface you must perform the steps outlined below.

! Conform the header file to the programming language
of the client application.

! Prepare a MattOpen profile to point to one or several
Matterhorn sessions on the PC.

! Place function calls in the source code of the client
application.

Note that the chapter assumes that you have installed the
Dynamic Interface (see Chapter 1, The MattOpen Dynamic
Interface) and also that you have created the Matterhorn
sessions you wish to call (see the Matterhorn for Windows
Setup and Reference Guide).

Conforming the Header File
First, you must make sure to conform the Dynamic Interface
header file to the programming language of the client
application.

In the MattOpen package, we have included a series of header
and include files for the most common programming
languages; Borland C++ (4.5), 16- and 32-bit Visual Basic, 16-
and 32-bit Visual C++, and 16- and 32-bit Borland Delphi.
These files are installed in the relevant subfolders of your
Matterhorn folder. If you use other programming languages
than these, you must conform the header file yourself.

M a t t O p e n

 71

Preparing the MattOpen Profile
The MattOpen profile provides the client application with
information relevant to the execution of the current
Matterhorn session. More precisely, the profile contains
information about which Matterhorn 4.0 client to execute and
which Matterhorn profile to initiate. Each service in the profile
is represented by a section. A section in the MattOpen profile
has the following syntax:

[SectionName]

MattWin = path to a valid Matterhorn 4.0 version

MattConf = path to a valid Matterhorn profile

A MattOpen profile may contain as many sections as you
wish, but only one section can be active at a time on the same
workstation. The sample profile below contains three sections:

[MATTWIN]

MattWin = c:\Matthorn\Mattwin.exe

MattConf = c:\Matthorn\Mattconf.ini

[DALMORE]

MattWin = c:\Matthorn\Mattwin.exe

MattConf = c:\Matthorn\Dalmore.ini

[CUSTOMER]

MattWin = c:\Matthorn\Mattwin.exe

MattConf = c:\Matthorn\customer.ini

Placing Function Calls
When the header file(s) and MattOpen profile(s) are in place,
you are ready to place function calls in the source code of the

M a t t O p e n

 72

client application. On the following pages we suggest a logical
order in which you can place the calls:

1. MattConnect - establishing the connection

2. MattCall functions - making the relevant calls

3. MattErrorText - debugging

4. MattDisconnect - closing the connection.

MattConnect - Establishing the Connection
The first function to use is MattConnect. The function
establishes the connection between the client application and
the Matterhorn session. Technically, its prime objective is to
locate the Matterhorn client and the Matterhorn session and
return a handle which is used for the communication. The
function takes the following three parameters:

In the following function call:

Result = MattConnect (Hndl, “Customer”,
“Dalmore.ini”);

MattConnect looks for the Customer section in the MattOpen
profile, Dalmore.ini.

MattCall - Making Calls
When the MattConnect function has been integrated, you
proceed to place calls to the different MattCall functions as
you see fit. For this purpose MattOpen provides functions for
different numbers of linkage section parameters:

M a t t O p e n

 73

MattCall_0 No linkage section parameters.

MattCall_1 One linkage section parameter.

MattCall_2 Two linkage section parameters.

MattCall_3 Three linkage section parameters.

MattCall_4 Four linkage section parameters.

MattCall Dynamic version. The user specifies the
number of parameters at runtime.

For each call, you will have to indicate the handle to use, the
requester to activate, and the linkage section parameters along
with their sizes. Note that the functions are waited calls. The
functions will return only when the requester does an exit
program, stops running, or terminates due to run-time error.

In the following function call:

Result = MattCall_0(Hndl, “Custom1”);

the MattCall_0 function calls the requester “Custom1”.

In the following function call:

Result = MattCall_2 (Hndl, “Custom1”, &Customer,
sizeof(Customer), &Order, sizeof(Order));

the MattCall_2 calls the requester “Custom1” with two
optional linkage section parameters, the structures
“Customer” and “Order”.

In the following function call:

M a t t O p e n

 74

Result = MattCall (Hndl,”Custom1”, 10, &Customers,
&CustomerSizes);

the MattCall function calls the requester “Custom1” with 10
(ten) parameters contained in the array “Customers”. The
“CustomerSizes” array contains the size of each Customer
structure.

MattDisconnect - Closing the Connection
When all functions calls have been entered correctly, the
connection is terminated by the MattDisconnect.

In the following function call:

Result = MattDisconnect(Hndl);

MattDisconnect terminates the connection identified by the
handle “Hndl”.

MattErrorText - Debugging
If you experience problems you can include the function
MattErrorText to assist you in debugging.

In the following function call:

Result = MattErrorText (Hndl, Msg, sizeof(Msg));

MattErrorText obtains the descriptive text associated with an
error message returned from the Matterhorn session identified
by the handle “Hndl“.

M a t t O p e n

 75

Development Considerations
This section discusses the considerations that are specific to
developing and compiling MattOpen Dynamic Interface
applications. The section presents the features for data
formatting and conversion provided with MattOpen and
introduces the steps involved when compiling an application.

M a t t O p e n

 76

Folder with
exe-file

Current folder

Windows\
System folder

Windows
folder

PATH
statement

Figure 4.1: When installing the MattOpen DLL, take note of the dynamic
link library search order depicted above.

M a t t O p e n

 77

The Location of Mattop16.dll & Mattop32.dll
The dynamic link libraries, Mattop16.dll and Mattop32.dll, are
installed in the Matt16 and Matt32 subfolders, respectively.
There are no formal demands as to the location of DLL, but
you should take note of the standard top-down search order
when a DLL is called (see Figure 4.1).

Formatting and Converting Data
It is important to realize that data on the Tandem do not match
data on the PC. MattOpen Dynamic Interface provides the
following API functions to swap integers back and forth
between the PC and the Tandem.

! The MOSwapInt function converts 2-byte data.
! The MOSwapLong function converts 4-byte data.

The following types of data conversion are not supported by
MattOpen; applications must convert these data types before
calling MattOpen:

! COBOL string to C language string-trailing spaces
versus terminating NULL

! Data alignment. IBM compatible PC needs no special
alignment (word aligned for 2 byte integers).

! Ranges of values-C language signed integer up to
32.767 and COBOL “PIC S9(4) COMP” up to 9.999.

! National language support-7-bit substitution.

M a t t O p e n

 78

Compiling an Application
Compiling a MattOpen Dynamic Interface application
containing the MattOpen import library generates a number of
object files. Linking the program generates the executable file.
When running the executable under Windows, the MattOpen
DLL is dynamically loaded.

Linking the MattOpen Libraries
DLLs are similar to runtime libraries except they are linked
with the application, when the application is run, not when the
application is linked with the linker. This method of linking a
library is called dynamic linking. DLLs make efficient use of
memory because only one copy of a library is resident in
memory at any given time. No matter how many programs are
using the services available through the DLL, there will still be
only one copy in memory. Linking a DLL may require more
system resources than linking a static library.

To link an application to a DLL, you must:

1. Perform a static link to the import library.

2. Call the import library to provide the linker with the
information necessary to set up relocation tables for the
functions in the DLL. These relocation tables are used
to support the dynamic linking the occurs at run time.

The MattOpen Dynamic Interface libraries involved in
dynamic linking are named as follows:

! Mattop16.lib/Mattop32.lib. The MattOpen import
library.

! Mattop16.dll/Mattop16.dll. The MattOpen dynamic
link library.

M a t t O p e n

 79

Mattop16.lib and Mattop32.lib are import libraries for the
relevant DLL and must be linked to the application. The
import library is generated with the ImpLib.exe utility
supplied with your compiler.

Applications are linked with the MattOpen API using any
linker which supports the library file format. The library
(included with your MattOpen package) contains all external
code and data references necessary to resolve calls to the
MattOpen API.

M a t t O p e n

 80

Chapter 5:
Dynamic Interface Examples

his chapter presents a series of relevant examples which
may serve as a starting point and inspiration to your

work with Dynamic Interface.

The chapter is organized as follows:

! Borland C++ Demo

! 32-bit Visual Basic Demo

! Two Samples

T

M a t t O p e n

 81

Borland C++ Demo
As part of your MattOpen package, you will find an
application written in Borland C++ (version 4.5). It is stored in
the Demos\Dynintf\Bc16 subfolder and represented by the
MattOpen Borland C++ icon in the MattOpen folder.

The application is an interface to Matterhorn’s own setup tool
on Tandem, Matterhorn Configuration, which is used to create
and edit Matterhorn sessions (see also the Matterhorn for
Windows Setup and Reference Guide).

Note that the entire source code of the application is also
stored in the Demos\Dynintf\Bc16 subfolder. On these pages
we will merely describe the calls to the Dynamic Interface.

To launch the MattOpen Borland C++ demo, double-click the
MattOpen Borland C++ icon. The opening screen of the
program is depicted in Figure 5.1 below.

Figure 5.1: The opening screen of the MattDemo program.

Troubleshooting the Demo
If the application will not start, right-click the icon and select
Properties from the popup menu. In the Properties dialog box
check that the command line contains valid references to
Mattwin.exe and the MattOpen profile, Mattconf.ini. Save
your changes and close the dialog box.

If the application still wont run, open the MattOpen profile,
Mattop16.ini in the BC16 folder, and verify that the
[MATTWIN]-section contains the correct settings. The
MattWin entry should point to a valid version of 16-bit
Matterhorn 4.0 for Windows. The MattConf entry should
point to a valid Matterhorn profile which contains

M a t t O p e n

 82

information that allows Matterhorn Configuration to be
executed as a Matterhorn session. By default, the profile
contains the following two lines:

MattWin = c:\Matthorn\Matt16\Mattwin.exe

MattConf = c:\Matthorn\ Matt16\Mattconf.ini

If these settings do not apply to the location of your
Matterhorn program files and support files, please adjust the
MattOpen profile to your environment.

Explaining the Demo
The demo application window contains the three buttons;
Session Setup, POBJ Search Paths, and Load Sessions.

The Session Setup Button
Clicking the Session Setup button takes you to the Session
Setup window of the Matterhorn Configuration program (the
requester Mattrq04). This window is the starting point when
creating or editing Matterhorn sessions. If you enter a name in
the Session Name field and then click the Session Setup
button, the application takes you to the information sheet of
the session where you may edit (or create) the session.

Technically, clicking the Session Setup button initiates a
MattConnect function with the following syntax:

Result = MattConnect (Hndl, Section, Profile);

where Section is a variable containing the section name in the
MattOpen profile. Mattopen.ini contains the following lines:

MattWin = c:\Matthorn\Matt16\Mattwin.exe

M a t t O p e n

 83

MattConf = c:\Matthorn\Matt16\Mattconf.ini

where Mattwin.exe is the Matterhorn Client executable file
and Mattconf.ini is a Matterhorn profile pointing to a
Matterhorn session which has access to the requester,
Mattrq04. You may now navigate the Session Setup window -
and edit or create new Matterhorn sessions. As you exit the
program, the session name will be returned to the demo.

If you enter a name in the field Session Name, and click the
Session Setup button, this name will serve as parameter in the
function MattCall_1. The function call has the following
syntax:

Result = MattCall_1 (Hndl, “Mattrq04”,
&SessionName, sizeof(SessionName));

The POBJ Search Path Button
Clicking the POBJ Search Path button takes you to the POBJ
Search Path window in the Matterhorn Configuration
program. Use this window to define new server classes and
enter POBJ search paths for your Matterhorn sessions.

Technically, clicking the POBJ Search Path button initiates call
to the MattCall_0 function.

Result = MattCall_0 (Hndl, “Mattrq04”));

The Load Sessions Button
If you click this button, all available Matterhorn sessions will
be retrieved and inserted in the Available Sessions list box in
the right-hand side of the application window.

Technically, the application performs a series of RSC sends to
the MattConf server and locates all session names which have
been defined.

M a t t O p e n

 84

32-bit Visual Basic Demo
As part of your MattOpen package, you find an application
written in 32-bit Visual Basic. It is stored in the
Demos\Dynintf\Vb32 subfolder and represented by the
MattOpen VisualBasic 32 icon in the MattOpen folder.

To launch the MattOpen Visual Basic 32 demo, double-click
the MattOpen VisualBasic 32 icon. The opening screen of the
program is depicted in Figure 5.2 next page.

Explaining the Demo
The purpose of the demo is to show you how various
functions of the Dynamic Interface operates. The demo
includes calls to all requesters accessible from the POBJ search
path, including rqzt, and rqxr which we will describe on the
following pages.

The Section Name Field
This field contains the section name of the MattOpen Profile.
Default is MATTWIN, but you may enter the valid section
name of a valid MattOpen profile. If you have installed
MattOpen in the default folders, you will not have to change
these options.

Figure 5.2: The application window of the 32-bit Visual Basic MattOpen
demo.

The Profile Field

M a t t O p e n

 85

This field contains a path to a MattOpen profile. Default is a
path leading to the MattOp32.ini in the Demos\Dynintf\Vb32
subfolder, which contains the MATTWIN section indicated in
the Section Name field. You may change the path to point to
another valid MattOpen profile.

The Connect Button
Click Connect to establish a connection to the Matterhorn
Client using the contents of the fields Section Name and
Profile as parameters in the MattConnect function. In this
example the MattConnect statement looks like this:

Result = MattConnect (&Hndl, Section, Profile);

where Section is the section name in the MattOpen profile.
Mattop32.ini contains the following lines:

MattWin = c:\Matthorn\Matt32\Mattwin.exe

MattConf = c:\Matthorn\Matt32\Mattconf.ini

where Mattwin.exe is the Matterhorn Client executable file
and Mattconf.ini is a Matterhorn profile pointing to all
requesters in the Matterhorn POBJ.

Increment
Clicking this button causes the number (in the field to the right
of the button) to be increased by one. Technically, a call with
one parameter will be made to the requester rqzt using the
MattCall_1 function The parameter is the number in the field
to the right of the button. Rqzt will then add one to this
number and return the value. The MattCall_1 function has the
following contents:

M a t t O p e n

 86

Result = MattCall_1 (Hndl, “rqzt”, &Number,
sizeof(Number);

Where number is the number in the edit field.

Calculate
When you click Calculate the numbers in the first and second
fields to the right of the button will be added, and the result
will be inserted in the third field. Technically, a call with three
parameters is made to the requester rqrx using the MattCall_3
function.

In the demo source code, the MattCall_3 function has been
modified to conform to Visual Basic standards, since Visual
Basic does not support typecasting. Below you see the C
syntax of the call:

Result = MattCall_3 (Hndl, “rqrx”, &Field1,
sizeof(Field1), &Field2, sizeof(Field2),
&Result, sizeof(Result));

The Call Button
Use this button to call any requester in the POBJ search path
with no optional linkage parameters.

Result = MattCall_0 (Hndl, Requester);

Disconnect
Clicking this button will terminate the connection to the
Matterhorn Client. The MattDisconnect function looks like
this:

Result = MattDisconnect(Hndl);

M a t t O p e n

 87

Show MattWin Errors
When Matterhorn reports any errors they will be displayed in
the Errors section. If more than one error has been reported
you can click the Show MattWin Errors button to view the
entire contents of the error log.

Result = MattErrorText(Hndl);

Two Samples
In Chapter 1 we presented a case in which a company had
implemented a new PC-based customer and marketing
module while maintaining the original Scobol order file on the
Tandem. In this section we present two statistical features of
that system which require that data be retrieved from the
Tandem, and describe how the retrieval is made possible
using the Dynamic Interface.

In the following, we have skipped the description of the
MattConnect function assuming that you are familiar with the
process of using this function.

Update Priority
The first feature assigns a new priority to a customer if the
total purchases of the customer exceed specific marginal
values. If a customer has purchased for less than $ 2,000 then
the Priority field will be set to D, if the total lies between $
2,000 and $ 20,000, the field will be set to C, etc.

From a functional viewpoint, when the user clicks the button
Update Priority, a call will be made to the order file using the
MattCall_1 function. The optional linkage parameter is the
Customer number. The UpdatePriority procedure then

M a t t O p e n

 88

calculates the total, assigns a priority, and returns it to the
client application.

/* Sets Priority according to total purchase */

void UpdatePriority(long CustomerNo)

{

 long Total; /* Holds total of customer purchase */

 /* Get total of customer purchase */

 if MattCall_1(hDLL, "RQCUSTOT",

 &CustomerNo, sizeof(CustomerNo),

 &Total, sizeof(Total))

 return; /* Error */

 /* Set priority according to total */

 if (Total < 2000)

 SetCustomerPriority(CustomerNo, 'D');

 else if (Total < 20000)

 SetCustomerPriority(CustomerNo, 'C');

 else if (Total < 200000L)

 SetCustomerPriority(CustomerNo, 'B');

 else

 SetCustomerPriority(CustomerNo, 'A');

}

Get Key Figures
The second feature retrieves various customer key figures
within a specific period in the order file. The dynamic function
MattCall is used to call the order file. Based on the customer
number and a start date and end date, the function shows four
of 30 possible key figures: Total, Tracking, Revenues, and
Cost.

/*Retrieves key figures within in a specific period*/

M a t t O p e n

 89

void GetKeyFigures(long CustomerNo, char
*StartDate, char *EndDate)

{

 #define FIGURES 30 /*There are 30 key figures*/

 long Args[FIGURES]; /*Arguments array */

 void *pArgs[FIGURES] /*Pointers to arguments*/

 short int ArgSizes[FIGURES]; /*Sizes of the arguments*/

 int i; /* Iterator*/

 /* Setup pointer array and sizes */

 for(i = 0; i < FIGURES; i++)

 {

 pArgs = &Args[i];

 ArgSizes[i] = sizeof(long);

 }

 /*Set up criteria in the first 3 arguments*/

 Args[0] = CustomerNo;

 Args[1] = (void *)StartDate;

 Args[2] = (void *)EndDate;

 /* Call requester for key figures */

 if (MattCall (hDLL, "RQCUSNUM", FIGURES,
pArgs, ArgSizes))

 return; /* Error */

 /* Show key figures */

 ShowTotal(Args[TOTAL]);

 ShowTracking(Args[TRACKING]);

 ShowRevenue(Args[REVENUE]);

 ShowCost(Args[COST]);

}

M a t t O p e n

 90

M a t t O p e n

 91

Part 2

he Requester
Replacer

Part 2 discusses the MattOpen Requester Replacer, which
allows you to redirect entire requester calls from a legacy
requester to procedures in a Windows DLL. The feature must
be activated from Screen Designer. You will learn to enable
and use the Requester Replacer, and a couple of examples and
exercises may serve as inspiration when using the Requester
Replacer.

T

M a t t O p e n

 92

Chapter 6:
The Requester Replacer

sing the MattOpen Requester Replacer, you may redirect
entire requester calls from the current requester to

procedures in a Windows DLL. The feature, which must be
enabled from Screen Designer, opens up the Tandem system
to the powerful and flexible DLL-technology.

The chapter is organized as follows:

! Introducing Requester Replacer

! Screen Designer and Requester Replacer

! Enabling Requester Replacer

! How Does Requester Replacer Work

! Files of Requester Replacer

U

M a t t O p e n

 93

Introducing Requester Replacer
This chapter introduces the MattOpen Requester Replacer
which allows you to redirect entire requester calls from a
legacy requester to procedures in a Windows DLL.

Use Requester Replacer when you recognize that certain
elements of your legacy system could be optimized using PC-
based technology. With Requester Replacer you do not have to
dump the entire legacy system just because certain requesters
do not provide the required functionality. Simply replace the
less functional requesters with DLLs as you see fit.

Screen Cobol
Requester A

Function 1

Windows DLL

Screen Cobol
Requester B

Function 1

Matterhorn session PC application

Figure 6.1: The Requester Replacer enables you to replace an entire
requester with a Windows DLL.

M a t t O p e n

 94

Screen Designer and Requester Replacer
The Requester Replacer is an integral part of Screen Designer,
which means that you must have a valid license for Screen
Designer in order to use Requester Replacer. Chapter 7, Using
Requester Replacer provides more information on using the
feature in Screen Designer.

Enabling Requester Replacer
The Requester Replacer option is an integral part of Screen
Designer. If you have already installed Screen Designer you
merely have to transfer the new license file, LICENSE, from
your MattOpen installation diskette to your Tandem.

The next time you launch Screen Designer, the Requester
Replacer option will be available from the Define menu.

How Does Requester Replacer Work
You simply define in Screen Designer that a requester is to be
replaced by a valid Windows DLL each time the requester is
called. All variables in the working storage will be passed to
the DLL and to the procedure.

In order to replace a requester you need two things:

1. A DLL with an appropriate interface.

2. A Requester Replace definition in Screen Designer.

In Chapter 7, Using Requester Replacer we will explore these
issues in detail.

M a t t O p e n

 95

Combining Requester Replacer with Dynamic
Interface

You may combine the MattOpen Dynamic Interface and the
Requester Replacer feature. Let’s imagine that your company
is currently using the Dynamic Interface for integrating new
PC-based applications with your legacy Pathway applications,
and you wish to replace a certain requester with a DLL for
providing better printing facilities. In this case you would
define a Requester Replace in Screen Designer, making any
call to this requester point to a DLL instead. At runtime, any
call for the requester in question will be redirected to the DLL.

Files of Requester Replacer
As part of your MattOpen package you find a couple of
examples and exercises which are installed in the
Demos\Reqrepl subfolder. The examples have been
developed in both Borland Delphi and Microsoft Visual C++
and they are detailed in Chapter 8, Requester Replacer
Examples.

The Include\Delphi Subfolder
This folder stores a Borland Delphi include file.

Reqrpl.pas Include file. The file defines the types
needed for implementing Requester
Replace DLLs developed in Borland
Delphi.

M a t t O p e n

 96

The Include\Msvc Subfolder
This folder stores a Microsoft Visual C++ header file.

Reqrpl.h Header file. The file defines the types
needed for implementing Requester
Replace DLLs developed in Microsoft
Visual C++.

The Demos\Reqrepl
The Demos\Reqrepl subfolder contains the files needed for
creating the sample Requester Replacer demos. The exercises
are described in Chapter 8, Requester Replacer Examples.

The Reqrepl\Delphi Subfolder
This subfolder contains the DLLs and source files developed in
Borland Delphi which are needed for the Requester Replacer
exercise described in Chapter 8, Requester Replacer Examples.

Mattypes.pas Include file used by Regrp16.dpr and
Reqrp32.dpr.

Reqrp16.dll 16-bit dynamic link library.

Reqrp16.dpr 16-bit Delphi project file.

Reqrp16.res 16-bit Delphi resource file.

Reqrp16.txt Textfile containing the filename of the
16-bit dynamic link library and the
procedure name.

M a t t O p e n

 97

Reqrp32.dll 32-bit dynamic link library.

Reqrp32.dpr 32-bit Delphi project file.

Reqrp32.res 32-bit Delphi resource file.

Reqrp32.txt Textfile containing the filename of the
32-bit dynamic link library and the
procedure name.

Reqmain.dfm Delphi form definition file.

The Reqrepl\Msvc Subfolder
This subfolder contains the DLLs and source files developed in
Microsoft Visual C++ which are needed for the Requester
Replacer exercise described in Chapter 8, Requester Replacer
Examples.

Reqrp32.dll 32-bit dynamic link library.

Reqrp32.mak Microsoft Visual C make file.

Reqrpl.c Microsoft Visual C source file.

Reqrpl.def Microsoft Visual C definition file.

Reqrp.h Microsoft Visual C header file.

Resource.h Resource interface file.

M a t t O p e n

 98

Chapter 7:
Using Requester Replacer

his chapter describes how to set up a Matterhorn session
to use the Requester Replacer feature from the point

when you load the relevant requester into Screen Designer
until the user clicks a button associated with a Requester
Replace. Issues related to programming the DLLs for a
Requester Replace are presented and detailed.

The chapter is organized as follows:

! Using Requester Replacer

! Programming the DLL

! Defining a Requester Replace

! Testing the Requester Replace

T

M a t t O p e n

 99

Using Requester Replacer
This chapter provides guidance for using Requester Replacer
and describes how to prepare a DLL for a Requester Replace.
As mentioned in the previous chapter you need two things in
order to replace a requester with a DLL:

1. A DLL with an appropriate interface.

2. A Requester Replace definition in Screen Designer.

On the following pages we will elaborate on these two issues.

Programming the DLL
On the following pages we assume that you understand what
a DLL is and the way it is used.

There are two main issues concerning programming the DLL:
getting the interface procedure right and addressing the
parameters. When programming a DLL which is to be used in
a Requester Replace, it may prove useful to start with one of
the sample demos located in the \Demos\Reqrepl subfolder.

The interface procedure is a ordinary exported procedure. It
does not return a value (in C syntax it is a void procedure).
Matterhorn assumes that the procedure uses the stdcall calling
model. In Visual C 2.0 this is denoted by the WINAPI function
modifier. A valid interface procedure prototype may look like
this:

void WINAPI ReplacedRequester (TArguments
*arguments);

M a t t O p e n

 100

The arguments parameter is a pointer to a TArguments
structure. In C syntax the structure is defined as:

typedef struct TArgumentsStruct

{

 char requester_name[32];

 pCallBack *callback_proc;

 short param_count;

 TParam param_list[100];

} TArguments;

requester_name identifies the called requester which have been
replaced. It is a null-terminated string. Using this identifier
you can differentiate between replaced requesters that use the
same DLL and interface procedure.

The CallBack function is used to provide the DLL with
information about the Matterhorn session. For instance, the
DLL can obtain the Session Name and differentiate among
sessions. For more information on the CallBack function, see
section CallBack Functionality of Requester Replacer.

param_count determines how many arguments are transferred
from the calling requester to the replaced requester (linkage
section). The param_list is an array of structures that describes
the transferred parameters. In C syntax the parameter
structure is defined as:

typedef struct TParamStruct

{

 short len;

 void *addr;

} TParam;

The len variable determines the size of the parameter while
addr is a pointer to the parameter. Notice that the format of the

M a t t O p e n

 101

parameter is defined by the Scobol program. You cannot
change the size of a parameter.

In order to access a parameter you can use a statement like
this:

strcpy(s, arguments->param_list[1].addr)

Assuming that the second parameter is a null-terminated
string, the above statement copies the string to a variable s.

CallBack Functionality of Requester Replacer
The Callback procedure that is transferred in a call to a
Requester Replace DLL provides you with information about
the calling Matterhorn session. The procedure is declared as (C
syntax):

void (WINAPI pCallBack)(unsigned short FuncId,
unsigned short * ReturnCode, void *Data);

Notice that the function is using the stdcall calling model
denoted in MSVC with the function modifier WINAPI.

The first parameter FuncId identifies what information to
return in the data parameter:

Value Information

1 Pathway name

2 System name

3 Session name

4 Terminal file

M a t t O p e n

 102

If the function succeeds ReturnCode is 0 (zero) upon return,
otherwise non-zero.

The Data parameter points to an allocated memory space that
contains the desired information upon return. All information
is currently represented as null-terminated strings. If the
function fails, the contents of the memory space is undefined.

Defining a Requester Replace
Start Screen Designer and load a requester into the main work
area. Once the requester is loaded, the Define menu becomes
accessible and you are ready to define a Requester Replace.

1. Select Requester Replace from the Define menu in
Screen Designer. This opens the Requester Replace
dialog box.

Figure 8.3: Enter the name of the requester you wish to be replaced
by a DDL.

2. In the Requester Replace dialog box, enter the name of
the requester you wish to replace by a DLL, and click
Create. This will take you to the Create Requester
Replace dialog box (see Figure 8.4).

3. In the field Library Filename, enter the name of the
DLL to address.

You must make sure that Matterhorn is able to locate
the DLL. One way to do this is to provide a valid path,
such as “C:\Matthorn\Test.dll” (remember the file
extension “DLL”). The DLL can also be located on a
network drive.

M a t t O p e n

 103

4. In the field Procedure Name, enter the name of the
procedure to call. The procedure name has to match an
exported procedure in the DLL. Note that the string
representing the procedure name is case sensitive. This
means that you have to provide the exact case of each
letter in the procedure name.

Figure 8.4 The Create Requester Replace dialog box.
There are a number of ways to check which procedures
are exported. In Windows 95 and NT 4.0, for instance,
you can use the Quick View facility of the Windows
Explorer. You can also use utilities like Borland’s
TDump.

5. Click OK to return to the Requester Replace dialog
box, and OK again to return to Screen Designer.

If you wish to base the Requester Replace on an existing
definition, type the name of the requester in the Base
Requester Replace on field or select it from the dropdown list.
The DLL and procedure name of the definition associated with
this requester, will be inserted in the fields Library Filename
and Procedure Name.

Editing a Requester Replace
You can also edit existing Requester Replace definitions from
Screen Designer:

1. Select Requester Replace from the Define menu in
Screen Designer to open the Requester Replace dialog
box.

M a t t O p e n

 104

2. In the Requester Replace dialog box, indicate the name
of the requester whose Requester Replace definition
you wish to you change, and click Edit.

3. In the Edit Requester Replace dialog box, change the
contents of the fields Library Filename and Procedure
Name.

4. Click OK to return to the Requester Replace dialog
box, and OK again to return to Screen Designer.

Figure 8.5 The Edit Requester Replace dialog box.

Debugging the Requester Replace
To test the Requester Replace, run the Matterhorn session by
clicking the relevant icon in your Matterhorn group folder. If
you experience problems, open the Messages window. This
window displays error messages that may assist you in
debugging the requester replace.

M a t t O p e n

 105

Chapter 8:
Requester Replacer Examples

his chapter presents examples and exercises which are
intended to show you how Requester Replacer may be

used.

The chapter is organized as follows:

! Requester Replacer Demo

! Hotels

T

M a t t O p e n

 106

Requester Replacer Demo
As part of your MattOpen package you find the files needed
for the Requester Replacer demo described in this section. The
demo is intended to demonstrate the functionality of requester
replacing. You must create the Requester Replacer definition
for the demo yourself using Screen Designer. Here you
indicate which requester you wish the DLL to replace. We
enclose DLLs developed in both 16- and 32-bit Borland Delphi
and Microsoft Visual C++. These are stored in the
Demos\Reqrepl subfolder.

Creating the Requester Replace Definition
In the example below, MATTRQ04 is the requester to replace.
The ReqRep32.dll is the DLL (developed in 32-bit Borland
Delphi) that replaces MATTRQ04 and ReplacedRequester is
the procedure to call in the DLL.

Figure 8.1: The Create Requester Replace dialog box. In this example
the Requester Replace is defined forMATTRQ04.

Running the Requester
When the call to the requester is made, the window below is
presented. The Replaced Requester window shows which
requester has been called and the number of parameters (if
any) that has been passed from the Matterhorn session. The
values of the parameters are also shown.

Figure 8.2: Screen of the Requester Replacer demo.

In the Replaced Requester window you may click the
CallBack button which retrieves various information about

M a t t O p e n

 107

the current Matterhorn session, including the Pathway system,
the session name, the terminal file name, etc. The Callback
function is described in Chapter 7, Using Requester Replacer.

Hotels
This example demonstrates how the Requester Replacer
feature may be used to brush up a Tandem application and
provide more functionality.

At a travel agency that services thousands of customers, the
requester that shows information about hotels has been
replaced by a DLL, which provides more elaborate
information about the hotels.

When the customer dials in to order a tour and asks for further
information about a specific hotel, the sales person clicks the
Hotels button on the screen. The button activates the hotels.dll
whose screen is depicted in the figure below.

Figure 8.3: The hotels.dll provides detailed information about hotels.

Note that this demo is not a part of your MattOpen package.

Creating the Requester Replace Definition
For this example, the following Requester Replace definition
has been entered in the Create Requester Replace dialog box:

Figure 8.4: The Create Requester Replace definition.

M a t t O p e n

 108

M a t t O p e n

 109

Part 3

he Matterhorn Macro
Language
Part 3 discusses the Matterhorn macro language

which you may use to create and run macros from your legacy
applications and/or client applications. Note that we will only
present those statements of the macro language which require
a MattOpen license. Also in this part, a series of examples may
serve as inspiration when using the Matterhorn macro
language.

T

M a t t O p e n

 110

Chapter 9:
The Matterhorn Macro Language

his chapter introduces the Matterhorn macro language,
which you may use to create and run macros from your

legacy applications and/or client applications. These macros
may be used to set up DDE-conversations between your legacy
requesters and any DDE-compatible application, call procedures
in a Windows DLL, or a combination of the two.

The chapter is organized as follows:

! The Matterhorn Macro Language

! Enabling the Matterhorn Macro Language

! The DDE Statements

! The CallDLL Statement

T

M a t t O p e n

 111

The Matterhorn Macro Language
The Matterhorn macro language is an integral part of the
Matterhorn Suite. The macro language enables you to create
macros and integrate them with your Matterhorn sessions.
You may use macros, for instance, to speed up and simplify
administrative tasks or exchange data with other applications
that support DDE or DLL. The Matterhorn macro language
provides you with several related options:

! create macros and run them from your legacy
Pathway applications in order to set up dynamic-data
exchange (DDE) conversations with other applications
that support DDE.

! create macros in the macro language of the client
application to call your legacy Pathway applications.

! create and run macros that calls a Windows DLL.

! create macros that combine DLL and DDE technology.

! Matterhorn may operate both as DDE-client and DDE-
server.

NOTE Some of the statements of the Matterhorn macro
language require no MattOpen license. These statements,
which are not related to the DDE- or DLL-technologies, are
described in Chapter 7, in the Screen Designer Setup and
Reference Guide.

M a t t O p e n

 112

Types of Macros
Using the Matterhorn macro language, you may create macros
which operate in the following ways:

• Matterhorn operating as DDE-client, requesting data
from any application with DDE-server capabilities, for
instance Microsoft Word, Excel or Access, or from
other Matterhorn sessions (see Figure 9.1). In this case,
the entire macro is created in Screen Designer.

Parameters passed to DDE -server
Matterhorn session

Macro executed
from requester

Data returned from DDE-server

Access database

Figure 9.1: Matterhorn operating as DDE-client, requesting data from
Access.

• Any DDE-compatible application operating as DDE-
client, requesting data from one or several Matterhorn
sessions or from other DDE-compatible applications
(see Figure 9.2). In this case, the entire macro is created
in the client application.

• Matterhorn and the DDE-compatible application both
operating as client and server in turn, requesting data
from each other or from other applications that may

M a t t O p e n

 113

operate as DDE-servers. For instance, a Screen
Designer macro, which is run from a Matterhorn
session, may activate a macro in Word, which in turn
will request data from another Matterhorn session (see
Figure 9.3).

Parameters passed to Matterhorn
session

Matterhorn session

Data returned from Matterhorn

Macro executed
from Word. Word
operating as DDE-
client.

Figure 9.2: Word operating as DDE-client, requesting data from a
Matterhorn session.

M a t t O p e n

 114

Matterhorn session 1

Macro executed from requester.
Macro will execute new macro
in PC application

PC application operating
as DDE-client

PC application operating
as DDE-server

Matterhorn session 2

Operating as DDE-server

Figure 9.3: Matterhorn macro executing a Word macro, which is
requesting data from a second Matterhorn session.

• Matterhorn operating as client making a call to a
Windows DLL (see Figure 9.4).

Parameters passed to DLL
Windows DLL

Matterhorn session

Macro calling a
dynamic link library

Data returned from DLL

Figure 9.4: A macro calls a Windows DLL from the requester.

M a t t O p e n

 115

Enabling the Matterhorn Macro
Language

The Matterhorn macro language is an integral part of Screen
Designer, but you cannot use those statements which are used
for DDE- and DLL-macros without a valid MattOpen license.
The remaining statements are described in Chapter 7 in the
Screen Designer Setup and Reference Guide.

To enable the statements used for DDE and DLL macros you
merely have to transfer the new license file, LICENSE, from
your MattOpen diskette to your Tandem. The next time you
launch Screen Designer, you will be able to create macros
containing the relevant DDE- and DLL statements.

The DDE Statements
The Matterhorn macro language provides the following
statements for DDE conversation:

! DDEInitiate

! DDEExecute

! DDEPoke

! DDERequest

! DDETerminate

! DDETerminateAll

The statements are presented and detailed in Chapter 10, The
DDE Statements.

M a t t O p e n

 116

The CallDLL Statement
The Matterhorn macro language provides the following
statement to call a Windows DLL:

! CallDLL

The statement is presented and detailed in Chapter 11, The
CallDLL Statement.

Combining Macros with Dynamic Interface
You may combine the MattOpen Dynamic Interface with
macros. Imagine a situation where your system has already
been set up to use the Dynamic Interface. Old and new has
been successfully integrated. Now you wish to extend a legacy
requester in the system, for instance with features for
validating the contents of certain fields. In this case, you
would write a macro in Screen Designer which makes the call
to the DLL that validates the contents of the fields, and then
associate the macro with a button or another screen object. At
runtime you would make a call to the requester using the
Dynamic Interface, and then have the contents of specific edit
fields validated by activating the macro.

M a t t O p e n

 117

Chapter 10:
DDE Statements

his chapter presents the syntax and application of the
DDE statements of the Matterhorn macro language which

may be used to set up DDE-conversations between your legacy
requesters and any DDE-compatible applications.

The chapter is organized as follows:

! The DDE Statements

! Parameter Types in DDE Statements

! DDEInitiate

! DDEExecute

! DDEPoke

! DDERequest

! DDETerminate

! DDETerminateAll

! DDE Support Files

T

M a t t O p e n

 118

The DDE Statements
Matterhorn macro language provides the following statements
for DDE conversation:

! DDEInitiate

! DDEExecute

! DDEPoke

! DDERequest

! DDETerminate

! DDETerminateAll

Before you proceed with the descriptions of the statements,
however, you should study the section Parameter Types in DDE
Statements.

Parameter Types in DDE Statements
On the following pages we will describe the various DDE
statements of the Matterhorn macro language. Each statement
takes one or several of the following two types of parameters:

! Integer

! Identifier

The Integer parameter may be any whole number between 1
and 10.

M a t t O p e n

 119

The Identifier parameter may be any one of the four following
types; string, user variable, DSC variable, and edit field.

The String Identifier
The string identifier is a string constant. String constants must
be enclosed in quotation marks as in “string”. If you should
ever need to use quotation marks within a string you must use
the “”string”” syntax.

Note that you may also use the concatenation operator ‘&’ to
build new strings, “Tom ”&”Jones” = “Tom Jones”.

The User Variable Identifier
You may use up till 255 user variables. User variables are
internal storage and may be used as you please. For the user
variable identifier you use the following notation; VAR[1].

The DSC Variable Identifier
The DSC variable identifier identifies a is a descriptor in
working storage. For DSC variables you use the following
notation: dsc[70].

The Edit Field Identifier
The edit field identifier identifies a specific edit field in the
current requester. As you load a requester into Screen
Designer, each edit field in the requester will have a unique
object name assigned to it.

Rather than referring to edit fields by screen coordinates,
Matterhorn refers to a field by its unique object name, enabling

M a t t O p e n

 120

the macros to locate a field no matter where it is placed on the
screen.

Note that only edit fields in requesters that have been
designed with Screen Designer will be assigned an object
name.

The syntax of this name is Edit<number>, as in Edit1, but you
may change the object name. Note that the maximum length of
an object name is 20 characters.

DDEInitiate
The DDEInitiate statement initiates a DDE-conversation with
the server application and opens a DDE-channel through
which the conversation may take place.

When you start a DDE-conversation using DDEInitiate(), you
reserve a channel for a specific topic recognized by the server
application. In Microsoft Word, for example, each open
document is a separate topic.

The statement has the following syntax:

DDEInitiate(Channel:Integer,Application:Identifier,
Topic:Identifier)

Channel

The channel number used for the DDE-
conversation.

Application The application’s EXE-file. Note that the
application should appear from your
PATH-statement. If the Matterhorn Client is
to operate as DDE-server, remember that
the application name of Matterhorn is
Mattwin.

M a t t O p e n

 121

Topic This parameter may either be a string
identifying a document or a spreadsheet,
for instance, or an edit field in the current
Matterhorn session.

Many applications that support DDE,
including Matterhorn, recognize a topic
named System, which is always available
and can be used to find out which other
topics are available. The string topic
associated with a Matterhorn session is a
so-called session identifier. The session
identifier is the current session name.

DDEInitiate Exemplified
In a Matterhorn session macro, the following statement
appears:

DDEInitiate(1, “WINWORD”,”LETTER.DOC”)

When the user runs the macro from the Matterhorn session,
this statement will reserve channel 1 for DDE-conversation
with Word and the document LETTER.DOC. If Word is not
currently running, the macro will ask you to confirm that the
application is launched.

DDEInitiate(1, Edit1, Edit2)

To run the macro, the user must make entries for the fields
Edit1 and Edit2 (an application name and a topic). The
statement will then reserve channel 1 for DDE-conversation
with the specified application name and topic and launch the
application.

M a t t O p e n

 122

DDEExecute
The DDEExecute statement sends a command or series of
commands to an application through a dynamic-data
exchange. Use this command, for instance, to launch a Word
macro from a Matterhorn session macro.

The statement has the following syntax:

DDEExecute (Channel:Integer, Command:Identifier)

Channel

The channel number of the DDE-conversation
as provided by DDEInitiate().

Command A command or series of commands recognized
by the server application, for instance a macro
or a function key. You can also use the format
described under SendKeys to send specific key
sequences. If the server application can’t
perform the specified command, an error
occurs.

DDEExecute Exemplified
In many applications that support dynamic-data exchange,
Command should be one or more statements or functions in the
application’s macro language. For example, in Microsoft Excel
the XLM macro instruction to create a new worksheet is
NEW(1). To send the same command through a DDE channel,
you use the following instruction:

DDEExecute (1, "[NEW(1)]")

Note that some applications, including Matterhorn, require
that each command (like macros) received through a DDE-

M a t t O p e n

 123

channel be enclosed in brackets. Keys and function keys must
be enclosed in braces:

DDEExecute(1,”{F1}”)

You can use a single DDEExecute instruction to send more
than one command. For example, the following instruction
tells Microsoft Excel to open and then close a worksheet:

DDEExecute (1, "[NEW(1)][FILE.CLOSE(0)]")

Note that there is no space between commands in brackets; a
space character between the commands would cause an error.
The preceding instruction is equivalent to the following two
instructions:

DDEExecute (1, "[NEW(1)]")

DDEExecute (1, "[FILE.CLOSE(0)]")

Another example: In a Matterhorn session macro, the
following statement appears:

DDEExecute (1, Edit3)

To run the macro, the user must make an entry for the field
Edit3 (the command name) prior to launching the macro.

A third example: In a Word macro, the following statement
appears:

DDEExecute(1,”[SetCursor(Edit5)]{Return})

The Word macro is designed to initiate a Matterhorn session
for DDE-conversation with Word. The SetCursor command
will then be executed, placing the cursor in the edit field

M a t t O p e n

 124

identified by Edit5. Subsequently, the edit field will receive a
Return keystroke. (The SetCursor statement is described in the
Screen Designer Setup and Reference Guide).

DDEPoke
The DDEPoke statement uses an open DDE-channel to send
data to an application. When you start a DDE-conversation
using DDEInitiate(), you open a channel to a specific topic
recognized by the server application. In Microsoft Word, for
instance, each open document is a separate topic.

When you send information to a topic in the server
application, you must specify the item in the topic you want to
send information to. In Microsoft Excel, for instance, cells are
valid items and are referred to using either the "R1C1" format
or named references. DDEPoke sends data as a text string; you
cannot send text in any other format, nor can you send
graphics.

The statement has the following syntax:

DDEPoke (Channel:Integer, Item:Identifier,
Data:Identifier)

Channel

The channel number of the DDE-
conversation, as provided by DDEInitiate().

Item An item within a DDE-topic. If the server
application does not recognize Item, an error
occurs. In Word, an item may be a bookmark
field.

Data The data to be sent to the server application.

M a t t O p e n

 125

DDEPoke Exemplified
In a Matterhorn session macro, the following statement
appears:

DDEPoke(1, “NAME”, Edit4)

The statement will use channel 1, which has previously been
reserved for a DDE-conversation with Word and the
document LETTER.DOC. The contents of Edit4 in the
Matterhorn session will then be transferred to the bookmark
field NAME in the Word document.

DDERequest
The DDERequest statement uses a DDE-channel to request an
item of information from a server application and transfer it to
the client application. When you start a DDE-conversation
using DDEInitiate(), you reserve a channel for a specific topic
recognized by the server application. In Microsoft Word, for
instance, each open document is a separate topic.

When you request information from the topic in the server
application, you must specify the item in the topic whose
contents you are requesting. In Microsoft Excel, for example,
cells are valid items and they are referred to using either the
"R1C1" format or named references.

DDERequest() returns data as a text string only; if the function
is unsuccessful, it returns an empty string (""). Text in any
other format cannot be transferred, nor can graphics.

The statement has the following syntax:

DDERequest (Channel:Integer, Field
Name:Identifier, Item:Identifier)

M a t t O p e n

 126

Channel

The channel number of the DDE-
conversation as provided by DDEInitiate().

Field Name The edit field in the Matterhorn session,
where the requested data will be inserted.
The edit field may also be identified by a
descriptor from working storage or a user
variable.

Item The item within a DDE-topic recognized by
the server application. DDERequest() returns
the entire contents of the specified item. If the
server application doesn’t recognize Item, an
error occurs.

DDERequest Exemplified
In a Matterhorn session macro, the following statement
appears:

DDERequest (1, Edit5, “NAME”)

When the macro is executed, the statement will use the open
DDE-channel to request the content of the item “NAME” and
insert it in the edit field identified by Edit5 in the Matterhorn
session.

Matterhorn and other applications that support DDE
recognize a topic named System. Three standard items in the
System topic are described below. Note that you can get a list
of the other items in the System topic using the item SysItems.

SysItems
Returns a list of all items in the System topic.

M a t t O p e n

 127

Topics
Returns a list of available topics.

Formats
Returns a list of all the Clipboard formats supported by the
server application.

DDETerminate
The DDETerminate statement closes the specified dynamic-
data exchange (DDE) channel. To free system resources, you
should close channels you are not using.

The statement has the following syntax:

DDETerminate(Channel:Integer)

Channel

The channel number of the DDE-
conversation as provided by DDEInitiate().

DDETerminate Exemplified
In a Matterhorn session macro, the following statement
appears:

DDETerminate(1)

The statement closes the DDE-conversation that has previous-
ly been reserved by channel 1.

M a t t O p e n

 128

DDETerminateAll()
The DDE TerminateAll statement closes all dynamic-data
exchange (DDE) channels opened by Matterhorn. Using this
statement is the same as using a DDETerminate statement for
each open channel. DDETerminateAll does not cause an error
if no-DDE channels are open.

If you interrupt a macro that opens a DDE-channel, you may
inadvertently leave a channel open. Open channels are not
closed automatically when a macro ends, and each open
channel uses system resources.

The statement has the following syntax:

DDETerminate()

DDE Support Files
As part of your MattOpen package you find a couple of
sample macros. These are stored in the Demos\Dde subfolder.

The Demos\Dde Subfolder
The Demos\Dde Subfolder contains two sample macro text
files:

Mattdde.txt Text file containing the statements of a
Matterhorn session macro that performs
DDE with Word.

Exceldde.txt Text file containing the statements of an
Excel macro that performs DDE with a
Matterhorn session.

M a t t O p e n

 129

Chapter 11:
The CallDLL Statement

his chapter is intended to explain the syntax and
application of the CallDLL statement, which may be used

to call procedures in a Windows DLL.

The chapter is organized as follows:

! The CallDLL Statement

! Syntax of the CallDLL Statement

! Using the CallDLL Statement

! Programming the DLL

! Files of CallDLL

T

M a t t O p e n

 130

The CallDLL Statement
The CallDLL statement, as the name suggests, provides an
additional feature to the Matterhorn macro language, namely
the ability to call a DLL during runtime. The chapter is
primarily aimed at programmers. We assume that you
understand what a DLL is and the way it is used. In order to
use the CallDLL statement you need to prepare two things:

1. A macro containing a CallDLL statement (see Chapter 12,
Using Matterhorn Macro Language).

2. A DLL with an appropriate interface (read this chapter).

Syntax of the CallDLL Statement
The statement has the following syntax:

CallDLL(DLLName,DLLProcedure,Param1,…ParamN, Identifier)

DLLName Name of dynamic link library to be called.
The DLL name may also be identified by a
descriptor from working storage or a user
variable.

DLLProcedure Name of procedure to be executed. The
procedure name may also be identified by
a descriptor from working storage or a
user variable. The procedure to be called
in the DLL is referred to as the interface
procedure.

Parameters The edit field(s) in the Matterhorn session
whose contents will be processed during
the call. The fields may also be identified

M a t t O p e n

 131

by descriptors from working storage or
user variables.

Identifier See the section Parameter Types in DDE
Statements in Chapter 10.

Using the CallDLL Statement
The CallDLL statement takes several parameters. The first
parameter identifies the DLL and the second, the interface
procedure. The remaining parameters are transferred to the
DLL as arguments. A valid CallDLL statement may look like
this:

CallDLL(“The_dll.dll”, “ProcName”, edit0, edit1);

You need to make sure that Matterhorn is able to locate the
DLL. One way to do this is to specify the entire path of the
DLL, such as “C:\Matthorn\Testdll.dll” in the CallDLL
statement (remember to include the file extension, “dll”). The
DLL can also be located on a network drive.

The procedure name has to match an exported procedure in
the DLL. Note that the string representing the procedure name
is case sensitive. This means that you have to provide the exact
case of each letter in the procedure name.

There are a number of ways to check which procedures are
exported. In Windows 95 and NT 4.0, for instance, you can use
the Quick View facility of the Windows Explorer. You can also
use utilities like Borland’s TDump.

M a t t O p e n

 132

Programming the DLL
There are two main issues which are important when
programming the DLL:

1. Getting the interface procedure right.

2. Addressing the arguments.

When programming a DLL for use with the CallDLL
statement it may prove useful to check the sample demos,
which are installed in the Demos\CallDLL folder. Matterhorn
imposes no limits as to the functionality of a DLL.

The interface procedure is an ordinary exported procedure. It
does not return a value (in C syntax it is a void procedure).
Matterhorn assumes that the procedure uses the stdcall calling
model. In Visual C 2.0 this is denoted by the WINAPI function
modifier. A valid interface procedure prototype may look like
this:

void WINAPI DLLCalled (short param_count,
TArguments *arg);

The DLL is loaded and unloaded each time the CallDLL
statement is called. This means that you cannot have any
context information in the DLL.

The param_count parameter determines how many arguments
are transferred to the interface function. The arg parameter is a
pointer to a TArguments structure which is an array of string
pointers. In C syntax the structure is defined as:

typedef struct TArgumentsStruct

{

 char *arg[255];

} TArguments;

M a t t O p e n

 133

Each element points to a null-terminated string and may
contain as many as 255 characters. In order to deference an
argument you can use a statement like this (C syntax):

 strcpy(s, arg->arg[1]);

This will copy the second argument to the variable s.

Files of CallDLL
As part of your MattOpen package you find a series of files
related to the CallDLL statement. These comprises header files
and include files and a series of demos.

The Include\Delphi Subfolder
This folder stores an include file for Borland Delphi.

Calldll.pas Include file. The file defines the types
needed for implementing DLLs for use
with CallDLL.

The Include\Msvc Subfolder
This folder stores a header file for Microsoft Visual C++.

Calldll.h Header file. The file defines the types
needed for implementing DLLs for use
with CallDLL.

M a t t O p e n

 134

The Demos\Calldll Subfolder
The Demos\Calldll subfolder contains the files for a series of
CallDLL demos. The demos are detailed in Chapter 12, Macro
Examples.

The Delphi Subfolder
The Delphi subfolder contains the files needed for the 16- and
32-bit Borland Delphi CallDLL demos.

Call16.dll 16-bit dynamic link library.

Call16.dpr 16-bit Delphi project file.

Call16.res 16-bit Delphi resource file.

Call32.dll 32-bit dynamic link library.

Call132.dpr 32-bit Delphi project file.

Call32.res 32-bit Delphi resource file.

Macro16.txt Contains the macro you need to call
the Calldll16.dll.

Macro32.txt Contains the macro you need to call
the Calldll32.dll.

The Msvc Subfolder
The Msvc subfolder contains the files needed for the Microsoft
Visual C++ CallDLL demo.

M a t t O p e n

 135

Call.dll Dynamic link library.

Call.mak Microsoft Visual C make file.

Calldll.c Microsoft Visual C source file.

Calldll.def Microsoft Visual C definition file.

Calldll.h Microsoft Visual C header file.

M a t t O p e n

 136

Chapter 12:
Using Matterhorn Macro Language

his chapter describes the principles of creating and
integrating macros in Screen Designer. The chapter is

organized as follows:

! Creating Macros in Screen Designer

! Associating the Macro with an Object

! Testing the Macro

T

M a t t O p e n

 137

Creating Macros in Screen Designer
The Matterhorn macro language is an integral part of Screen
Designer, which means that Screen Designer is the develop-
ment tool you use when creating macros. It is also from Screen
Designer that you associate the macros with the objects of a
requester.

In this context, “associating” the macro with an object refers to
the process of relating the macro to either a button, an edit
field, a multimedia object, a picture or the requester object.
The user then activates the macro from the requester by
clicking a button, entering certain data in an edit field, clicking
a picture or a multimedia object, etc.

There are no formal limits as to the number of macros you
may create for and activate from the same requester. For
instance, you may create different macros for the same
requester in order to retrieve different sets of values from
other programs. The only limit is disk space.

Creating a Macro
Start Screen Designer and load a requester into the main work
area. Once a requester is loaded into Screen Designer, the
Define menu becomes accessible and you are ready to create
the macro:

1. Select Define, Macro to open the Macro dialog box (see
Figure 12.3).

2. In the Macro Name field, enter a name for the new
macro and click Create to open the Create Macro
dialog box (see Figure 12.4).

M a t t O p e n

 138

In the Macro Description field, enter the relevant
macro statements (See Chapter 10, The DDE Statements
and Chapter 11, The CallDLL Statement).

3. Click the OK button.

Figure 12.3: The Macro dialog box.

Figure 12.4: Enter the macro statements in the Macro Definition field.

Associating the Macro with an Object
In Screen Designer you may associate a macro with the
following types of objects:

Buttons Click the button to launch the macro.

Edit fields Double-click the edit field to launch the
macro.

Pictures Click the picture to launch the macro.

Multimedia
objects

Click the multimedia object to launch the
macro.

Requester
object

The macro will be executed as the user
performs an accept of the screen, for
instance when exiting or updating the
requester or moving on to another
requester.

Associating the Macro with an Object

The macro may be associated with the object when creating or
formatting the object. To insert a new object and associate it
with a macro:

M a t t O p e n

 139

1. From the Object menu, select the relevant Insert
command, or click the corresponding button on the tool
bar.

2. A blank object will be inserted at the centre of the main
work area. Use the associated Object Inspector to
format the object (see Figure 12.5).

3. If the object already exists, select the object with the
mouse.

Figure 12.5: Associate the macro with the object
from the Object Inspector.

4. Click the small arrow to the right of the Macro
property name to display a list of available macros.
Scroll down the list until you’ve located the desired
macro.

5. Return to Screen Designer.

Associating the Macro with the Requester Object

If you associate the macro with the requester object, you can
have the requester launch the macro as the user performs an
accept of the screen, for instance when exiting or updating the
requester or moving on to another requester.

To associate the macro with the requester object:

1. Click anywhere in the background of the requester to
open the Object Inspector of the requester object.

2. Click the small button to the right of the OnAccept
property name and locate the macro on the list.

3. Return to Screen Designer.

M a t t O p e n

 140

Figure 12.6: Associate the macro with the
requester object from the Object Inspector.

Debugging the Macro
To test the macro, run the Matterhorn session by clicking the
relevant icon in your Matterhorn group folder. Locate the
relevant object and launch the macro.

If you experience problems, open the Messages window. This
window displays error messages that may assist you in
debugging the macro.

DDE to Matterhorn
Matterhorn can also operate as a DDE server. In this way an
application can communicate with your legacy applications.
For instance, MS Word can extract customer information from
a database located on the Tandem by issuing a few DDE
statements.

Cnv = DDEInitiate("mattwin", "mattwin")

Data$ = DDERequest$(Cnv, "Edit6")

DDETerminate(Cnv)

The above code retrieves the value of the edit field named
“Edit6” from the legacy application into a local Word variable
named Data.

Notice that the topic of the DDERequest is the name of the Edit
field (the object name). This means that you can only fetch
values one at a time. This also applies to DDEPoke statements.

If you want to have a Matterhorn session call another
application using a macro and this application should use
DDE to communicate with the same Matterhorn session, make

M a t t O p e n

 141

sure that the application specifies the string “DDELoopBack”
as topic in its DDE connection statement. Otherwise
Matterhorn will generate the error “DDE client rejected while
running macro”.

Chapter 13:
Macro Examples

his chapter is a collection of simple examples that is
intended to show you how to create macros using the

DDE statements and CallDLL statement of the Matterhorn
macro language in Screen Designer. Simple as they are, the
examples will serve as inspiration in your work with the
Matterhorn macro language.

The chapter is organized as follows:

! Validating Country Codes

! Merging Letters in Word

! Launching a Macro from Excel

T

M a t t O p e n

 142

M a t t O p e n

 143

Validating Country Codes
In the first example, we will create a macro that validates the
country code used for dialing to different countries in Europe.
The macro is based on the CallDLL statement. When the user
enters the name of the country in the field Country and
double-clicks the field, it is automatically updated with the
correct code used for telephone calls to that country.

Validation is performed by the procedure MapCountryCode
in the DLL called Call.dll. The C source code depicted below is
also stored in the Demos\Calldll\Msvc subfolder:

void WINAPI MapCountryCode (short param_count,
TArguments *arg)

{

 char *country_code;

 // Fetch first parameter

 country_code = arg->arg[0];

 // Uppercase code

 strupr(country_code);

 if (!strcmp(country_code, "F")) // France

 strcpy(arg->arg[0], "0033");

 else if (!strcmp(country_code, "GB"))// Gr.Britain

 strcpy(arg->arg[0], "0044");

 else if (!strcmp(country_code, "D")) // Germany

 strcpy(arg->arg[0], "0049");

 else if (!strcmp(country_code, "S")) // Sweden

 strcpy(arg->arg[0], "0046");

 else if (!strcmp(country_code, "I")) // Italy

 strcpy(arg->arg[0], "0039");

 else if (!strcmp(country_code, "E")) // Spain

 strcpy(arg->arg[0], "0034");

M a t t O p e n

 144

else if (!strcmp(country_code, "A")) // Austria

 strcpy(arg->arg[0], "0043");

 else if (!strcmp(country_code, "DK"))// Denmark

 strcpy(arg->arg[0], "0045");

 else if (!strcmp(country_code, "N")) // Norway

 strcpy(arg->arg[0], "0047");

 else if (!strcmp(country_code, "NL"))// Holland

 strcpy(arg->arg[0], "0031");

}

In order to call this DLL you must create a macro in Screen
Designer.

Start Screen Designer and load the relevant requester into
Screen Designer. Select Macro from the Define menu. In the
Create Macro dialog box, enter the following statement:

CallDLL(“Call.dll”,”MapCountryCode”,Country)

In the macro the edit field Country contains and receives the
country code.

When you have created the macro, associate it with the
Country field using the Object Inspector. Remember to save
the requester.

Merging Letters in Word
This Matterhorn session macro merges data from a customer
file with a standard letter in Word and then initiates a Word
macro that prints the letter. Its purpose is to print an order
confirmation targeted at the person who has ordered a specific
product. In the requester, the macro is associated with the
button Print Order Confirmation.

M a t t O p e n

 145

The macro contains the following statements which are
entered in the Create Macro dialog box:

DDEInitiate(1, "WINWORD", "dalmerge.doc")

DDEPoke(1, "Name", Edit2)

DDEPoke(1, "Street", Edit3)

DDEPoke(1, "PostCode", PostCode)

DDEPoke(1, "City", Edit5)

DDEPoke(1, "Country", Edit6)

DDEPoke(1, "ZipCode", Edit7)

DDEPoke(1, "Contact1", Contact1)

DDEPoke(1, "Product", Product)

DDEExecute(1, "[FILEPRINT]")

DDETerminate(1)

Technically, when the user clicks the button, this is what
happens:

The macro initiates a Word session and opens the standard
letter Dalmerge.doc. It then inserts the contents of the Tandem
fields Name, Street, PostCode, ZipCode, Country, Contact1,
Product, and Sales Person in the relevant places in the Word
document (see Figure 13.1). The macro then executes the Word
macro FILEPRINT, which sends the order confirmation to the
printer.

Figure 13.1: The standard letter, OrderConf.doc. The contents of the edit
fields are inserted in the relevant places before the letter is printed.

Launching a Macro from Word
In this macro Matterhorn operates as DDE-server. The Word
macro retrieves all available session names in Matterhorn

M a t t O p e n

 146

Configuration and inserts them in a Word Document. Note
that the macro is explained in the source code of the macro.

‘

‘The macro assumes that Matterhorn starts in the
‘MattRq01 requester.

‘

Sub MAIN

‘ Initialize DDE channel

 chnl = DDEInitiate("mattwin", "mattwin")

‘ Type F3 to enter Session Setup

 DDEExecute chnl, "[DoFKey(" + Chr$(34) + "F3" +
Chr$(34) + ")]"

‘ Type F4 (ReadNext) to get first requester

 DDEExecute chnl, "[DoFKey(" + Chr$(34) + "F5" +
Chr$(34) + ")]"

‘ When the same session name is returned twice
‘there are no more

 PrevSession$ = "NONEXSISTINGSESSION"

 Session$ = ""

 While Session$ <> PrevSession$

 PrevSession$ = Session$

‘ Edit6 contains the session name

 Session$ = DDERequest$(chnl, "Edit6")

 If Session$ <> PrevSession$ Then

‘ Insert the name at the end of the document

 EndOfDocument

 Insert Session$

 InsertBreak .Type = 6

‘ Type F5 to get the next session

 DDEExecute chnl, "[DoFKey(" + Chr$(34) +
"F5" + Chr$(34) + ")]"

M a t t O p e n

 147

 End If

 Wend

‘ Finish off by typing SF16

 DDEExecute chnl, "[DoFKey(" + Chr$(34) + "SF16"
+ Chr$(34) + ")]"

‘ Close DDE channel

 DDETerminate chnl

End Sub

M a t t O p e n

 148

Index

1
16-bit MattOpen, 21

3
32-bit MattOpen, 21

6
6530/3270-sessions, 22

A
associating

macro with object, 143

B
Borland C++, 46
Borland Delphi, 46
Borland Pascal, 46
button

associate with macro, 142

C
CallBack function, 102; 109
CallDLL

files of, 136
CallDLL statement, 132–38

programming the DLL, 135
syntax of, 133
using, 134

compiling an application, 78
converting data

Dynamic Interface, 77

D
DDE, 27; 114

set up DDE conversation, 27;
114

DDE statements, 120–32
DSC variable identifier, 122
edit field identifier, 122
parameter types in, 121
string identifier, 122
user variable identifier, 122

DDE-client, 115
DDEExecute (statement, 125
DDEInitiate (statement), 123
DDEPoke (statement), 127

M a t t O p e n

 2

DDERequest (statement), 128
DDETerminate (statement), 130
DDETerminateAll() (statement),

131
development considerations

Dynamic Interface, 75
DLL

programming for Requester
Replacer, 100

search order of, 34
DLL-technology

Requester Replacer, 26
Dynamic Interface, 30–91; 45–

50; 69–74
a case, 41
and macros, 44; 119
and Requester Replacer, 44;

96
compile an application, 78
constant names, 50
Delphi subfolder, 36
Demos/Dynintf subfolder, 37
development considerations,

75
error codes of, 66
examples, 80
features of, 26; 32
files of, 34
function call format, 46
functions of, 39; 52
header file of, 70
MattOpen profile, 71
notation conventions, 48
operation of, 39
programming languages, 46
Vb subfolder, 36
Vb16 subfolder, 38
Vb32 subfolder, 38

E
edit field

associate with macro, 142
error codes

of Dynamic Interface, 66
examples

of Dynamic Interface, 80
of Requester Replacer, 107

F
formatting data

Dynamic Interface, 77
function call format, 46

H
header file

of Dynamic Interface, 70

I
InstallShield wizard, 28

J
Java, 22

L
Linking

the dynamic link libraries, 78

M
macros

and Dynamic Interface, 44;
119

associate with button, 142
associate with edit field, 142
associate with multimedia

object, 142
associate with object, 142

M a t t O p e n

 3

associate with picture, 142
associate with requester

object, 142
creating, 139–45
examples, 147–51
running from legacy

applications, 27; 114
testing, 145
types of macros, 114

Matt16 folder, 34
MattCall

description of, 64
return value of, 65; 66
syntax of, 64; 66
using, 72

MattCall_0
description of, 55
return value of, 56
syntax of, 56

MattCall_1
description of, 57
return value of, 58
syntax of, 57

MattCall_2
description of, 58
return value of, 59
syntax of, 59

MattCall_3
description of, 60
return value of, 61
syntax of, 60

MattCall_4
description of, 62
return value of, 63
syntax of, 62

MattConnect
description of, 53
return value of, 54
syntax of, 53
using, 72

MattDisconnect
using, 74

Matterhorn
making calls to DLL, 117
operating as DDE-client, 115
operating as DDE-server, 115

Matterhorn for Windows, 21
Matterhorn macro language,

113–51
CallDLL statement, 118; 132
DDE statements, 118; 120–32
enabling, 29; 117
examples, 147–51
features of, 26; 114
Identifier parameter type, 121
Integer parameter type, 121
using, 139

MattErrorText
description of, 54
return value of, 55
syntax of, 54
using, 74

Mattop16.dll, 33; 34
functions of, 52
location of, 34; 77

Mattop32.dll, 33; 35
functions of, 52
location of, 77

MattOpen
16-bit, 21
32-bit, 21
an example, 20
combining the tools of, 27
components of, 25
DDE support files, 131
Dynamic Interface, 26
features of, 18
installing, 28
license for, 29
purpose of, 19
Requester Replacer, 26
requirements for, 27

MattOpen DLL, 32
MattOpen profile

M a t t O p e n

 4

preparing, 71
MattWeb, 22

intranet, 22
Microsoft Visual Basic, 46
Microsoft Visual C++, 46
multimedia object

associate with macro, 142

N
notation conventions

of Dynamic Interface, 48

P
picture

associate with macro, 142

R
requester object

associate with macro, 142
launching a macro from, 144

Requester Replace
CallBack function, 102
creating, 104
defining in Screen Designer,

103
editing, 105
testing, 106

Requester Replacer, 92–111
and Dynamic Interface, 44; 96
Demos\Reqrepl subfolder, 97
enabling, 29; 95
examples, 107
features of, 26; 94
files of, 96
Include\Delphi subfolder, 96
Include\Msvc subfolder, 97
operation of, 95
programming DLL, 100
Reqrepl\Delphi subfolder, 97
Reqrepl\Msvc subfolder, 98
using, 99–106

S
Screen Designer, 23

defining a Requester Replace,
103

features of, 24
Matterhorn for Windows, 21
MattWeb, 22
Requester Replacer, 95

T
the Matterhorn Suite, 21

	Hotline
	Distribution
	ALTA A/S
	Table of Contents
	Preface
	About This Manual
	How This Book Is Organized
	Introduction
	Part 1: MattOpen Dynamic Interface
	Part 2: The Requester Replacer
	Part 3: Matterhorn Macro Language

	Introduction to MattOpen 2.0
	Introducing MattOpen 2.0
	Openness Means Flexibility
	An Example
	16- and 32-bit MattOpen

	The Matterhorn Suite
	Matterhorn for Windows
	MattWeb
	Screen Designer

	The Components of MattOpen 2.0
	MattOpen Dynamic Interface
	MattOpen Requester Replacer
	Matterhorn Macro Language

	Combining the Components of MattOpen
	Requirements for MattOpen
	Installing MattOpen 2.0
	Enabling Requester Replacer
	Enabling the Matterhorn Macro Language

	Chapter 1: �MattOpen Dynamic Interface
	MattOpen Dynamic Interface
	Securing Past and Future Software Investments
	Mattop16.dll & Mattop32.dll - Dynamic Link Libraries

	Files of the Dynamic Interface
	The Matt16 Folder
	The Matt32 Folder
	The Include Folder
	The Demos/Dynintf Subfolder

	How Does Dynamic Interface Work
	Functions of the DLL
	Integrating Dynamic Interface
	Combining Dynamic Interface with Requester Replacer
	Combining Dynamic Interface with Macros

	Chapter 2:�Programming Environment
	Programming Languages
	Function Call Format
	
	Function Name
	Name in DLL
	Description
	Syntax
	Parameters
	Return Values

	Hungarian Notation
	Constant Names

	Chapter 3:�Functions and Options
	Functions of the Dynamic Interface
	MattConnect
	Function Name
	Name in DLL
	Description
	Syntax
	Parameters
	Return Value

	MattErrorText
	Function Name
	Name in DLL
	Description
	Syntax
	Parameters
	Return Value

	MattCall_0
	Function Name
	Name in DLL
	Description
	Syntax
	Parameters
	Return Value

	MattCall_1
	Function Name
	Name in DLL
	Description
	Syntax
	Parameters
	Return Value

	MattCall_2
	Function Name
	Name in DLL
	Description
	Syntax
	Parameters
	Return Value

	MattCall_3
	Function Name
	Name in DLL
	Description
	Syntax
	Parameters
	Return Value

	MattCall_4
	Function Name
	Name in DLL
	Description
	Syntax
	Parameters
	Return Value

	MattCall
	Function Name
	Name in DLL
	Description
	Syntax
	Parameters
	Return Value

	MattDisconnect
	Function Name
	Name in DLL
	Description
	Syntax
	Parameters
	Return Value

	Dynamic Interface Error Codes

	Chapter 4:�Using Dynamic Interface
	Using Dynamic Interface
	Conforming the Header File
	Preparing the MattOpen Profile
	Placing Function Calls
	MattConnect - Establishing the Connection
	MattCall - Making Calls
	MattDisconnect - Closing the Connection
	MattErrorText - Debugging

	Development Considerations
	The Location of Mattop16.dll & Mattop32.dll
	Formatting and Converting Data
	Compiling an Application
	Linking the MattOpen Libraries

	Chapter 5:�Dynamic Interface Examples
	Borland C++ Demo
	Troubleshooting the Demo
	Explaining the Demo

	32-bit Visual Basic Demo
	Explaining the Demo

	Two Samples
	Update Priority
	Get Key Figures

	Chapter 6:�The Requester Replacer
	Introducing Requester Replacer
	Screen Designer and Requester Replacer
	Enabling Requester Replacer
	How Does Requester Replacer Work
	Combining Requester Replacer with Dynamic Interface

	Files of Requester Replacer
	The Include\Delphi Subfolder
	The Include\Msvc Subfolder
	The Demos\Reqrepl
	The Reqrepl\Msvc Subfolder

	Chapter 7:�Using Requester Replacer
	Using Requester Replacer
	Programming the DLL
	CallBack Functionality of Requester Replacer

	Defining a Requester Replace
	Editing a Requester Replace

	Debugging the Requester Replace

	Chapter 8:�Requester Replacer Examples
	Requester Replacer Demo
	Creating the Requester Replace Definition
	Running the Requester

	Hotels
	Creating the Requester Replace Definition

	Chapter 9:�The Matterhorn Macro Language
	The Matterhorn Macro Language
	Types of Macros

	Enabling the Matterhorn Macro Language
	The DDE Statements
	The CallDLL Statement
	Combining Macros with Dynamic Interface

	Chapter 10:�DDE Statements
	The DDE Statements
	Parameter Types in DDE Statements
	The String Identifier
	The User Variable Identifier
	The DSC Variable Identifier
	The Edit Field Identifier

	DDEInitiate
	DDEInitiate Exemplified

	DDEExecute
	DDEExecute Exemplified

	DDEPoke
	DDEPoke Exemplified

	DDERequest
	DDERequest Exemplified

	DDETerminate
	DDETerminate Exemplified

	DDETerminateAll()
	DDE Support Files
	The Demos\Dde Subfolder

	Chapter 11:�The CallDLL Statement
	The CallDLL Statement
	Syntax of the CallDLL Statement
	Using the CallDLL Statement
	Programming the DLL
	Files of CallDLL
	The Include\Delphi Subfolder
	The Include\Msvc Subfolder
	The Demos\Calldll Subfolder

	Chapter 12:�Using Matterhorn Macro Language
	Creating Macros in Screen Designer
	Creating a Macro
	Associating the Macro with an Object
	Debugging the Macro
	DDE to Matterhorn

	Chapter 13:�Macro Examples
	Validating Country Codes
	Merging Letters in Word
	Launching a Macro from Word

	Index

